Mechanisms of Solvent Tolerance in Gram-Negative Bacteria

Annual Review of Microbiology - Tập 56 Số 1 - Trang 743-768 - 2002
Juan L. Ramos1, Estrella Duque1, Marı́a-Trinidad Gallegos1, Patricia Godoy1, María Isabel Ramos‐González1, Antonia Rojas1, Wilson Terán1, Ana Segura1
1Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain;

Tóm tắt

▪ Abstract  Organic solvents can be toxic to microorganisms, depending on the inherent toxicity of the solvent and the intrinsic tolerance of the bacterial species and strains. The toxicity of a given solvent correlates with the logarithm of its partition coefficient in n-octanol and water (log Pow). Organic solvents with a log Pow between 1.5 and 4.0 are extremely toxic for microorganisms and other living cells because they partition preferentially in the cytoplasmic membrane, disorganizing its structure and impairing vital functions. Several possible mechanisms leading to solvent-tolerance in gram-negative bacteria have been proposed: (a) adaptive alterations of the membrane fatty acids and phospholipid headgroup composition, (b) formation of vesicles loaded with toxic compounds, and (c) energy-dependent active efflux pumps belonging to the resistance-nodulation–cell division (RND) family, which export toxic organic solvents to the external medium. In these mechanisms, changes in the phospholipid profile and extrusion of the solvents seem to be shared by different strains. The most significant changes in phospholipids are an increase in the melting temperature of the membranes by rapid cis-to-trans isomerization of unsaturated fatty acids and modifications in the phospholipid headgroups. Toluene efflux pumps are involved in solvent tolerance in several gram-negative strains, e.g., Escherichia coli, Pseudomonas putida, and Pseudomonas aeruginosa. The AcrAB-TolC and AcrEF-TolC efflux pumps are important for n-hexane tolerance in E. coli. A number of P. putida strains have been isolated that tolerate toxic hydrocarbons such as toluene, styrene, and p-xylene. At least three efflux pumps (TtgABC, TtgDEF, and TtgGHI) are present in the most extensively characterized solvent-tolerant strain, P. putida DOT-T1E, and the number of efflux pumps has been found to correlate with the degree of solvent tolerance in different P. putida strains. The operation of these efflux pumps seems to be coupled to the proton motive force via the TonB system, although the intimate mechanism of energy transfer remains elusive. Specific and global regulators control the expression of the efflux pump operons of E. coli and P. putida at the transcriptional level.

Từ khóa


Tài liệu tham khảo

10.1128/AAC.41.10.2067

10.1038/90429

10.1271/bbb1961.55.1985

10.1271/bbb.56.145

10.1271/bbb.59.213

Aono R, 1998, J. Bacteriol., 180, 938, 10.1128/JB.180.4.938-944.1998

Asako H, 1997, Appl. Environ. Microbiol., 63, 1428, 10.1128/aem.63.4.1428-1433.1997

Beveridge TJ, 1999, J. Bacteriol., 181, 4725, 10.1128/JB.181.16.4725-4733.1999

Bibi E, 2001, J. Mol. Microbiol. Biotechnol., 3, 171

10.1080/09687680010030200

Brown MH, 2001, J. Mol. Microbiol. Biotechnol., 3, 163

10.1128/AEM.66.12.5387-5392.2000

10.1128/jb.177.23.6894-6901.1995

Cronan JE, 1968, J. Bacteriol., 95, 2054, 10.1128/jb.95.6.2054-2061.1968

Cruden DL, 1992, Appl. Environ. Microbiol., 58, 2723, 10.1128/aem.58.9.2723-2729.1992

10.1016/0005-2736(78)90435-2

10.1046/j.1365-2958.2001.02310.x

10.1128/JB.183.3.807-812.2001

10.1073/pnas.92.17.7617

10.1128/jb.178.19.5803-5805.1996

10.1007/s007920050084

10.1128/JB.182.1.107-115.2000

10.1128/JB.183.18.5285-5292.2001

10.1016/0378-1097(94)90395-6

Heipieper HJ, 1994, Appl. Environ. Microbiol., 60, 4440, 10.1128/aem.60.12.4440-4444.1994

Heipieper HJ, 1992, Appl. Environ. Microbiol., 58, 1847, 10.1128/aem.58.6.1847-1852.1992

Heipieper H-J, 1996, Appl. Environ. Microbiol., 62, 2773, 10.1128/aem.62.8.2773-2777.1996

Holtwick R, 1997, Appl. Environ. Microbiol., 63, 4292, 10.1128/aem.63.11.4292-4297.1997

10.1021/es991171a

Ingram LO, 1977, Appl. Environ. Microbiol., 33, 1233, 10.1128/aem.33.5.1233-1236.1977

10.1038/338264a0

Ishii T, 1993, J. Biol. Chem., 268, 18633, 10.1016/S0021-9258(17)46676-2

10.1128/jb.178.20.6056-6058.1996

10.1128/AAC.45.5.1467-1472.2001

Junker F, 1999, J. Bacteriol., 181, 5693, 10.1128/JB.181.18.5693-5700.1999

10.1007/s007920100176

10.1007/BF02522611

10.1007/BF00170572

10.1016/S0378-1097(01)00119-7

10.1074/jbc.273.1.85

Kieboom J, 1998, J. Bacteriol., 180, 6769, 10.1128/JB.180.24.6769-6772.1998

Kim K, 1998, J. Bacteriol., 180, 3692, 10.1128/JB.180.14.3692-3696.1998

Kobayashi H, 1999, J. Bacteriol., 181, 4493, 10.1128/JB.181.15.4493-4498.1999

10.1128/JB.182.22.6451-6455.2000

10.1128/JB.183.8.2646-2653.2001

Köhler T, 1999, J. Bacteriol., 181, 6300, 10.1128/JB.181.20.6300-6305.1999

10.1038/35016007

10.1128/JB.182.11.3142-3150.2000

Li X, 1998, J. Bacteriol., 180, 2987, 10.1128/JB.180.11.2987-2991.1998

10.1007/BF02522976

10.1128/AAC.43.6.1340

10.1128/AAC.45.1.105-116.2001

10.1046/j.1365-2958.1996.357881.x

10.1128/jb.175.19.6299-6313.1993

10.1111/j.1365-2958.1995.tb02390.x

10.1128/JB.182.4.937-943.2000

10.1016/S0378-1119(99)00113-4

Nakajima H, 1995, Appl. Environ. Microbiol., 61, 2302, 10.1128/aem.61.6.2302-2307.1995

10.1271/bbb.59.1323

Neyfakh AA, 2001, J. Mol. Microbiol. Biotechnol., 3, 151

10.1128/jb.178.20.5853-5859.1996

Nikaido H, 1999, J. Bacteriol., 181, 4, 10.1128/JB.181.1.4-8.1999

10.1128/jb.178.1.306-308.1996

Paulsen IT, 2001, J. Mol. Microbiol. Biotechnol., 3, 145

Pedrotta V, 1999, J. Bacteriol., 181, 3256, 10.1128/JB.181.10.3256-3261.1999

10.1128/jb.179.13.4219-4226.1997

Pinkart HC, 1996, Appl. Environ. Microbiol., 62, 1129, 10.1128/aem.62.3.1129-1132.1996

10.1038/nbt1294-1349

Ramos JL, 1998, J. Bacteriol., 180, 3323, 10.1128/JB.180.13.3323-3329.1998

10.1128/jb.177.14.3911-3916.1995

10.1074/jbc.272.7.3887

10.1016/S1369-5274(00)00183-1

10.1128/AEM.67.9.4338-4341.2001

10.1128/JB.183.13.3967-3973.2001

10.1016/0378-1097(90)90530-4

10.1111/j.1365-2958.1994.tb00362.x

10.1128/JB.183.14.4127-4133.2001

10.1046/j.1462-2920.1999.00033.x

Sikkema J, 1995, Microbiol. Rev., 59, 201, 10.1128/mr.59.2.201-222.1995

10.1128/jb.174.9.2986-2992.1992

Deleted in proof

10.1128/JB.182.5.1410-1414.2000

10.3109/10408419409113560

10.1093/emboj/17.22.6487

10.1128/jb.177.4.998-1007.1995

10.1128/JB.182.17.4803-4810.2000

10.1128/AAC.45.5.1515-1521.2001

Weber FJ. 1994. Toluene: biological waste-gas treatment, toxicity and microbial adaptation. PhD thesis. Univ. Wageningen. The Netherlands.

10.1016/S0304-4157(96)00010-X

10.1099/13500872-140-8-2013

10.1074/jbc.M007687200

10.1128/jb.179.19.6122-6126.1997

10.1073/pnas.96.11.6456

10.1006/jmbi.1998.2313

10.1073/pnas.96.13.7190

10.1128/JB.182.15.4264-4267.2000

10.1128/AAC.42.9.2225

10.1016/S0092-8674(00)80548-6

10.1128/AAC.43.2.287