Mechanisms of Plasma Etching of Titanium, Indium, Tin, and Zinc Oxides in a Mixture of HBr + Ar

Pleiades Publishing Ltd - Tập 50 - Trang 379-386 - 2021
A. M. Efremov1,2, S. A. Smirnov1,2, V. B. Betelin2, K.-H. Kwon3
1Federal State Budgetary Educational Institution of Higher Education “Ivanovo State University of Chemical Technology,”, Ivanovo, Russia
2Scientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow, Russia
3Korea University, Sejong, South Korea

Tóm tắt

The kinetics and mechanisms of reactive ion etching of titanium oxides (TiO2), indium (In2O3), tin (SnO2), and zinc (ZnO) in HBr + Ar plasma. It is found that an increase in the fraction of Ar is accompanied by a decrease in the etching rates of all the materials under study, while the absolute values of the rates for any composition of the mixture are correlated to the value of the breaking energy of the oxide bond and/or the volatility of the interaction products. With the combined use of methods of diagnostics and plasma modeling, the stationary concentrations of active particles and the density of their fluxes on the treated surface are determined. The use of these data for the analysis of the kinetics of heterogeneous processes showed that (a) the dominant etching mechanism in the range 0–75% Ar is an ion-stimulated chemical reaction; and (b) the effective probability of the interaction of bromine atoms increases (for TiO2) or decreases (for In2O3, SnO2, and ZnO) with the increasing dilution of HBr with argon. Assumptions are made about the reasons for this dependence.

Tài liệu tham khảo

Advances in Optoelectronic Technology and Industry, London: Taylor and Francis Group, 2020. Saji, K.J. and Jayaraim, K., Oxide Thin Film Transistors, New York: Nova Science, 2017. Advanced Plasma Processing Technology, New York: Wiley, 2008. Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing, New York: Wiley, 2005. Garay, A.A., Hwang, S.M., and Chung, C.W., Inductive coupled plasma reactive ion etching characteristics of TiO2 thin films, Thin Solid Films, 2015, vol. 587, pp. 20–27. Joo, Y.-H., Woo, J.-C., and Kim, C.-I., Dry etching properties of TiO2 thin film using inductively coupled plasma for resistive random access memory application, Trans. Electr. Electron. Mater., 2012, vol. 13, no. 3, pp. 144–148. Norasetthekul, S., Park, P.Y., Baik, K.H., Lee, K.P., Shin, J.H., Jeong, B.S., Shishodia, V., Lambers, E.S., Norton, D.P., and Pearton, S.J., Dry etch chemistries for TiO2 thin films, Appl. Surf. Sci., 2001, vol. 185, pp. 27–33. Lee, J., Efremov, A., Lee, B.J., et al., Etching characteristics and mechanisms of TiO2 thin films in CF4 + Ar, Cl2 + Ar and HBr + Ar inductively coupled plasmas, Plasma Chem. Plasma Process., 2016, vol. 36, pp. 1571–1588. Kwon, K.-H., Efremov, A., Kim, M., Min, N.K., Jeong, J., and Kim, K., Etching characteristics of In2O3 and SnO2 thin films in an inductively coupled HBr/Ar plasma: Effects of gas mixing ratio and bias power, Jpn. J. Appl. Phys., 2010, vol. 49, p. 031103. Park, J.C., Kim, J.K., Kim, T.G., Lee, D.W., Cho, H., Kim, H.S., Yoon, S.J., and Jung, Y.-G., Dry etching of SnO2 and ZnO films in halogen-based inductively coupled plasmas, Int. J. Mod. Phys. B, 2011, vol. 25, no. 31, pp. 4237–4240. Woo, J.C., Kim, G.H., Kim, J.G., and Kim, C.I., Etching characteristic of ZnO thin films in inductively coupled plasma, Surf. Coat. Technol., 2008, vol. 202, pp. 5705–5708. Lee, J.-M., Chang, K.-M., Kim, K.-K., Choi, W.-K., and Park, S.-J., Dry etching of ZnO using an inductively coupled plasma, J. Electrochem. Soc., 2001, vol. 148, no. 1, pp. G1–G3. Nordheden, K.J., Dineen, M., and Welch, C., Inductively coupled plasma etching of ZnO, Proc. SPIE, 2007, vol. 6474, p. 64740P. Nordheden, K.J., Plasma etching of ZnO: A review, Proc. SPIE, 2004, vol. 5359. Na, S.W., Shin, M.H., Chung, Y.M., Han, J.G., Jeung, S.H., Boo, J.H., and Lee, N.-E., Etching characteristics of ZnO thin films in chlorine-containing inductively coupled plasmas, Microelectron. Eng., 2006, vol. 83, pp. 328–335. Ham, Y.-H., Efremov, A., Yun, S.J., Kim, J.K., Min, N.-K., and Kwon, K.-H., Etching characteristics and mechanism of ZnO thin films in inductively coupled HBr/Ar plasma, Thin Solid Films, 2009, vol. 517, pp. 4242–4245. Johnson, E.O. and Malter, L., A floating double probe method for measurements in gas discharges, Phys. Rev., 1950, vol. 80, pp. 58–70. Shun’ko, E.V., Langmuir Probe in Theory and Practice, Boca Raton, FL: Universal Publ., 2008. Efremov, A., Choi, B.G., Nahm, S., Lee, H.W., Min, N.K., and Kwon, K.H., Plasma parameters and active species kinetics in an inductively coupled HBr plasma, J. Korean Phys. Soc., 2008, vol. 52, no. 1, pp. 48–55. Efremov, A., Lee, J., and Kwon, K.-H., A comparative study of CF4, Cl2 and HBr + Ar inductively coupled plasmas for dry etching applications, Thin Solid Films, 2017, vol. 629, pp. 39–48. Kwon, K.-H., Efremov, A., Kim, M., Min, N.K., Jeong, J., and Kim, K., A model-based analysis of plasma parameters and composition in HBr/X (X = Ar, He, N2) inductively coupled plasmas, J. Electrochem. Soc., 2010, vol. 157, no. 5, pp. H574–H579. Efremov, A., Kim, J.H., and Kwon, K.H., A model-based comparative study of HCl and HBr plasma chemistries for dry etching purposes, Plasma Chem. Plasma. Process., 2015, vol. 35, pp. 1129–1142. Curley, G.A., Gatilova, L., Guilet, S., Bouchoule, S., Gogna, G.S., Sirse, N., Karkari, S., and Booth, J.P., Surface loss rates of H and Cl radicals in an inductively coupled plasma etcher derived from time-resolved electron density and optical emission measurements, J. Vac. Sci. Technol. A, 2010, vol. 28, no. 2, pp. 360–372. Kota, G.P., Coburn, J.W., and Graves, D.B., Heterogeneous recombination of atomic bromine and fluorine, J. Vac. Sci. Technol., A, 1999, vol. 17, no. 1, pp. 282–290. Rooth, J.R., Industrial Plasma Engineering, Philadelphia: IOP Publ., 1995. Roosmalen, A.J., Baggerman, J.A.G., and Brader, S.J.H., Dry Etching for VLSI, New York: Plenum, 1991. Sugavara, M., Plasma Etching: Fundamentals and Applications, New York: Oxford Univ. Press, 1998. Gray, D.C., Tepermeister, I., and Sawin, H.H., Phenomenological modeling of ion enhanced surface kinetics in fluorine-based plasma etching, J. Vac. Sci. Technol. B, 1993, vol. 11, pp. 1243–1257. Efremov, A.M., Rybkin, V.V., Betelin, V.B., and Kwon, K.-H., On mechanisms of oxygen influence on gas-phase parameters and silicon reactive-ion etching kinetics in HBr + Cl2 + O2 plasma, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2019, vol. 62, no. 10, pp. 76–83.