Mechanisms of GABAergic Homeostatic Plasticity

Neural Plasticity - Tập 2011 - Trang 1-6 - 2011
Peter Wenner1
1Department of Physiology, Emory University, School of Medicine, 615 Michael Street, Room 601, Atlanta, GA 30322, USA.

Tóm tắt

Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity. This form of plasticity has been described in a wide array of networks at several different stages of development, but most work and reviews have focussed on the excitatory inputs of excitatory neurons. Here we review homeostatic plasticity of GABAergic neurons and their synaptic connections. We propose a simplistic model for homeostatic plasticity of GABAergic components of the circuitry (GABAergic synapses onto excitatory neurons, excitatory connections onto GABAergic neurons, cellular excitability of GABAergic neurons): following chronic activity blockade there is a weakening of GABAergic inhibition, and following chronic increases in network activity there is a strengthening of GABAergic inhibition. Previous work on GABAergic homeostatic plasticity supports certain aspects of the model, but it is clear that the model cannot fully account for some results which do not appear to fit any simplistic rule. We consider potential reasons for these discrepancies.

Từ khóa


Tài liệu tham khảo

2008, Frontiers in Molecular Neuroscience, 1, 5

10.1113/jphysiol.2004.077362

10.1146/annurev.neuro.28.061604.135751

10.1016/j.neuron.2010.04.028

10.1016/j.tins.2007.01.004

10.1016/S0896-6273(02)01049-8

1994, Science, 264, 974, 10.1126/science.8178157

10.1038/36103

10.1038/nature01242

2002, Journal of Neuroscience, 22, 1328, 10.1523/JNEUROSCI.22-04-01328.2002

2001, The Journal of neuroscience, 21

10.1073/pnas.95.12.7097

10.1016/S0896-6273(02)01049-8

10.1523/JNEUROSCI.5217-04.2005

1994, Journal of Neuroscience, 14, 2383, 10.1523/JNEUROSCI.14-04-02383.1994

1986, Nature, 320, 750, 10.1038/320750a0

10.1016/j.neuron.2006.01.017

10.1038/nn1677

10.1038/nn.2517

2010, Journal of Neuroscience, 30, 16220, 10.1523/JNEUROSCI.3085-10.2010

10.1016/j.mcn.2005.11.002

2007, PloS One, 2

10.1152/jn.90986.2008

2010, The Journal of Neuroscience, 30, 13016, 10.1523/JNEUROSCI.1659-10.2010

10.1111/j.1460-9568.2006.04692.x

10.1152/physrev.00017.2006

10.1016/j.neuron.2009.03.003

10.1016/j.nbd.2006.09.002

10.1038/nature04223

10.1038/nature01868

10.1016/j.coph.2006.11.005

2002, Journal of Neuroscience, 22, 4412, 10.1523/JNEUROSCI.22-11-04412.2002

10.1523/JNEUROSCI.1421-05.2006

10.1016/j.brainresrev.2008.12.015

10.1113/jphysiol.2004.077495

10.1523/JNEUROSCI.5265-03.2004

10.1016/S0006-8993(02)03832-5

2010, Nat Med, 302

10.1038/85480

10.1038/11330

10.1016/S0896-6273(00)80563-2

10.1016/0959-4388(95)80012-3

10.1074/jbc.M109.080069

10.1152/jn.90635.2008

1999, Learning and Memory, 6, 284, 10.1101/lm.6.3.284

10.1038/nn1351

10.1016/S0079-6123(07)00012-X

10.1038/nature05079

1997, Journal of Neuroscience, 17, 4527, 10.1523/JNEUROSCI.17-12-04527.1997

10.1073/pnas.0813058106

10.1073/pnas.0806037105

10.1038/nn878

10.1152/jn.90635.2008

10.1016/0959-4388(95)80012-3