Mechanisms of Amplified Arteriogenesis in Collateral Artery Segments Exposed to Reversed Flow Direction

Arteriosclerosis, Thrombosis, and Vascular Biology - Tập 35 Số 11 - Trang 2354-2365 - 2015
Joshua L. Heuslein1,2, Joshua K. Meisner1,2, Xuanyue Li1,2, Ji Song1,2, Helena Vincentelli1,2, Ryan J. Leiphart1,2, Elizabeth G. Ames1,2, Brett R. Blackman1,2, Richard J. Price1,2
1From the Departments of Biomedical Engineering (J.L.H., J.K.M., X.L., J.S., H.V., R.J.L., E.G.A., R.J.P.), Molecular Physiology and Biological Physics (E.G.A.), Radiology (R.J.P.), and Radiation Oncology (R.J.P.), University of Virginia, Charlottesville; and HemoShear Therapeutics LLC, Charlottesville, VA (B.R.B.).
2HemoShear Therapeutics LLC, Charlottesville, VA (B.R.B.).

Tóm tắt

Objective—

Collateral arteriogenesis, the growth of existing arterial vessels to a larger diameter, is a fundamental adaptive response that is often critical for the perfusion and survival of tissues downstream of chronic arterial occlusion(s). Shear stress regulates arteriogenesis; however, the arteriogenic significance of reversed flow direction, occurring in numerous collateral artery segments after femoral artery ligation, is unknown. Our objective was to determine if reversed flow direction in collateral artery segments differentially regulates endothelial cell signaling and arteriogenesis.

Approach and Results—

Collateral segments experiencing reversed flow direction after femoral artery ligation in C57BL/6 mice exhibit increased pericollateral macrophage recruitment, amplified arteriogenesis (30% diameter and 2.8-fold conductance increases), and remarkably permanent (12 weeks post femoral artery ligation) remodeling. Genome-wide transcriptional analyses on human umbilical vein endothelial cells exposed to reversed flow conditions mimicking those occurring in vivo yielded 10-fold more significantly regulated transcripts, as well as enhanced activation of upstream regulators (nuclear factor κB [NFκB], vascular endothelial growth factor, fibroblast growth factor-2, and transforming growth factor-β) and arteriogenic canonical pathways (protein kinase A, phosphodiesterase, and mitogen-activated protein kinase). Augmented expression of key proarteriogenic molecules (Kruppel-like factor 2 [KLF2], intercellular adhesion molecule 1, and endothelial nitric oxide synthase) was also verified by quantitative real-time polymerase chain reaction, leading us to test whether intercellular adhesion molecule 1 or endothelial nitric oxide synthase regulate amplified arteriogenesis in flow-reversed collateral segments in vivo. Interestingly, enhanced pericollateral macrophage recruitment and amplified arteriogenesis was attenuated in flow-reversed collateral segments after femoral artery ligation in intercellular adhesion molecule 1 −/− mice; however, endothelial nitric oxide synthase −/− mice showed no such differences.

Conclusions—

Reversed flow leads to a broad amplification of proarteriogenic endothelial signaling and a sustained intercellular adhesion molecule 1–dependent augmentation of arteriogenesis. Further investigation of the endothelial mechanotransduction pathways activated by reversed flow may lead to more effective and durable therapeutic options for arterial occlusive diseases.

Từ khóa


Tài liệu tham khảo

10.1016/j.jacc.2009.06.058

10.1111/j.1549-8719.2010.00008.x

10.1161/CIRCULATIONAHA.105.610469

10.1016/j.ahj.2009.04.014

10.1161/hc0802.104407

10.1089/hum.2006.17.683

10.1111/j.1549-8719.2010.00051.x

10.1007/s00395-008-0760-x

10.1016/j.cardiores.2004.10.032

10.1126/science.3941904

10.1161/CIRCRESAHA.113.301340

10.1152/physrev.1995.75.3.519

10.1073/pnas.071052598

10.1016/S1357-4310(98)01372-0

10.1038/jcbfm.2008.165

10.1161/01.RES.0000242560.77512.dd

10.1073/pnas.12.3.207

10.1117/1.JBO.18.9.096011

10.1161/CIRCRESAHA.109.212746

10.1152/ajpheart.00772.2008

10.1152/physrev.00047.2009

10.1152/ajpheart.00168.2011

10.1161/01.RES.0000126922.18222.F0

10.1074/jbc.M804524200

10.1182/blood.V85.7.1696.bloodjournal8571696

10.1172/JCI117410

10.1007/s004280050039

10.1006/bbrc.1998.9921

10.1115/1.1486468

10.1074/jbc.M307528200

10.1074/jbc.M108789200

10.1182/blood-2005-08-3465

10.1016/S0002-9440(10)63002-7

10.1182/blood-2006-07-036020

10.1182/blood-2009-06-228726

10.1074/jbc.C500144200

10.1186/1471-2105-10-48

10.1016/j.atherosclerosis.2008.05.049

10.1089/ARS.2008.2393

10.1161/CIRCULATIONAHA.112.119321

10.1161/CIRCULATIONAHA.104.526954

10.1016/j.cardiores.2003.12.014

Hayashi S, Morishita R, Nakamura S, Yamamoto K, Moriguchi A, Nagano T, Taiji M, Noguchi H, Matsumoto K, Nakamura T, Higaki J, Ogihara T. Potential role of hepatocyte growth factor, a novel angiogenic growth factor, in peripheral arterial disease: downregulation of HGF in response to hypoxia in vascular cells. Circulation. 1999;100(suppl 19):II301–II308.

10.1038/sj.gt.3301379

10.1096/fj.01-0563fje

10.1161/01.res.0000019540.41697.60

10.1161/01.ATV.0000244684.23499.bf

10.1172/JCI39837

10.1016/j.jtcvs.2005.08.052

10.1093/cvr/cvm116

10.1161/ATVBAHA.107.147421

10.1093/cvr/cvs143

10.1093/cvr/cvq002

10.1161/CIRCRESAHA.110.229955

10.1038/nature03952

10.1161/CIRCRESAHA.113.301407

10.1006/bbrc.1994.1794

10.1152/ajpheart.00496.2004

10.1111/j.1549-8719.2012.00194.x

10.1161/01.RES.0000111527.42357.62

10.1006/jmcc.2002.2013

10.1161/hh2101.098613

Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol. 1997;273(3 pt 2):H1255–H1265.

10.1152/ajpheart.00956.2012

10.1152/ajpcell.00156.2010

10.1067/mva.2003.66

10.1161/ATVBAHA.113.301826

10.1161/01.RES.0000200162.94463.d7

10.1161/01.RES.0000216595.15868.55

10.1093/emboj/cdf688

10.1006/mvre.2000.2260

10.1161/ATVBAHA.109.195305

10.1073/pnas.0501444102

10.1016/j.jvs.2009.08.045

10.1152/ajpheart.2001.281.6.H2528

10.1161/ATVBAHA.107.145375

10.1152/ajpheart.00579.2005