Mechanism of frequency lock-in in transonic buffeting flow

Journal of Fluid Mechanics - Tập 818 - Trang 528-561 - 2017
Chuanqiang Gao1, Weiwei Zhang1, Xintao Li1, Yilang Liu1, Jingge Quan1, Zhengyin Ye1, Yuewen Jiang2
1School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
2Department of Engineering Science, University of Oxford, Oxford, OX2 0ES, UK

Tóm tắt

Frequency lock-in can occur on a spring suspended airfoil in transonic buffeting flow, in which the coupling frequency does not follow the buffet frequency but locks onto the natural frequency of the elastic airfoil. Most researchers have attributed this abnormal phenomenon to resonance. However, this interpretation failed to reveal the root cause. In this paper, the physical mechanism of frequency lock-in is studied by a linear dynamic model, combined with the coupled computational fluid dynamics/computational structural dynamics (CFD/CSD) simulation. We build a reduced-order model of the flow using the identification method and unsteady Reynolds-averaged Navier–Stokes computations in a post-buffet state. A linear aeroelastic model is then obtained by coupling this model with a degree-of-freedom equation for the pitching motion. Results from the complex eigenvalue analysis indicate that the coupling between the structural mode and the fluid mode leads to the instability of the structural mode. The instability range coincides with the lock-in region obtained by the coupled CFD/CSD simulation. Therefore, the physical mechanism underlying frequency lock-in is caused by the linear coupled-mode flutter – the coupling between one structural mode and one fluid mode. This is different from the classical single-degree-of-freedom flutter (e.g. transonic buzz), which occurs in stable flows; the present flutter is in the unstable buffet flow. The response of the airfoil system undergoes a conversion from forced vibration to self-sustained flutter. The coupling frequency certainly should lock onto the natural frequency of the elastic airfoil.

Từ khóa


Tài liệu tham khảo

10.1016/j.jfluidstructs.2015.10.009

10.1017/jfm.2015.510

Rivera, J. A. , Dansberry, B. E. , Bennett, R. M. , Durham, M. H.  & Silva, W. A. 1992 NACA 0012 benchmark model experimental flutter results with unsteady pressure distributions. AIAA Paper AIAA-92-2396-CP.

10.1016/j.ast.2016.02.029

10.2514/1.45249

10.1017/S0022112002002318

McDevitt, J. B.  & Okuno, A. F. 1985 Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames high Reynolds number facility. Tech. Paper 2485. NASA.

Landon, R. H. 1982 NACA0012 oscillatory and transient pitching. AGARD Report 702, AGARD, Dataset 3.

10.2514/1.J052559

10.1016/j.paerosci.2003.12.001

10.1016/j.jcp.2006.10.035

10.1016/j.jfluidstructs.2005.05.011

10.1016/j.cja.2015.12.002

10.1016/j.jfluidstructs.2010.10.001

10.1016/j.paerosci.2014.09.001

10.1016/j.jfluidstructs.2011.10.006

10.1016/j.camwa.2016.06.024

10.1063/1.4791603

Zhang, 2007, Two better loosely coupled solution algorithms of CFD based aeroelastic simulation, Engng Appl. Comput. Fluid., 1, 253

10.2514/1.J053588

10.1017/S0022112009991418

10.1016/j.jfluidstructs.2006.04.008

10.1017/S0022112009006673

10.1016/j.jfluidstructs.2016.12.005

10.1017/S0022112010005550

10.2514/1.9885

10.1016/j.ast.2006.12.004

10.1016/0022-460X(86)90191-4

10.1017/S0022112010005537

10.1061/(ASCE)0733-9399(2003)129:2(146)

10.1017/jfm.2013.194

10.1016/j.jfluidstructs.2006.04.005

10.1017/S0022112009991960

10.1017/jfm.2012.330

10.1146/annurev.fluid.33.1.445

10.2514/1.J053424

10.2514/1.12349

10.2514/1.J052185

10.1209/epl/i2006-10168-7

10.2514/1.J055186

10.1017/jfm.2015.548

10.1016/S0376-0421(01)00003-3

10.1017/S0022112006000310

10.1002/fld.777

10.1016/S0142-727X(00)00053-9

Doerffer, 2010, Unsteady Effects of Shock Wave Induced Separation

10.2514/1.J053304

Jameson, A. 1991 Time dependent calculations using multigrid with applications to unsteady flows past airfoils and wings. AIAA Paper 91-1259.

Soda, 2005, IFASD, Munich, Germany

10.1007/s11433-015-5683-6

10.1017/jfm.2012.329

10.1016/j.compfluid.2013.08.007

Spalart, P.  & Allmaras, S. 1992 A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439.

10.2514/1.J050581

10.2514/1.16658

10.2514/2.867

10.2514/1.J052873

10.2514/1.J053201

10.1016/j.compfluid.2016.03.031

10.1016/j.euromechflu.2016.11.015

Blevins, 1990, Flow-Induced Vibration

10.1115/1.4001478

10.2514/1.30190

10.1016/j.jsv.2013.10.037

10.1016/j.jfluidstructs.2014.02.016

10.1007/s11071-015-2282-z

10.1016/j.compstruc.2007.01.013

Hyung, 2006, Strong coupled flow/structure interaction with a geometrically conservative ALE scheme on general hybrid meshes, J. Comput. Phys., 219, 671, 10.1016/j.jcp.2006.04.011

10.1016/j.jfluidstructs.2015.07.007

10.2514/1.J051512