Mechanism of electronic-excitation transfer in organic light-emitting devices based on semiconductor quantum dots

Semiconductors - Tập 47 - Trang 971-977 - 2013
A. G. Vitukhnovskii1, A. A. Vashchenko1, V. S. Lebedev1,2, R. B. Vasiliev3, P. N. Brunkov4,5, D. N. Bychkovskii5
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow oblast, Russia
3Moscow State University (Department of Materials Science), Moscow, Russia
4Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
5Optogan-OLS, St. Petersburg, Russia

Tóm tắt

The results of an experimental study of organic light-emitting diodes (LEDs) with luminescent layers based on two types of CdSe/CdS semiconductor quantum dots (QDs) with an average CdSe core diameter of 3 and 5 nm and a characteristic CdS shell thickness of 0.5 nm are presented. The dependences of the LED efficiency on the QD concentration are determined. The experimental data are used to determine the mechanism of electronic-excitation transfer from the organic matrix to the semiconductor QDs. Ways of optimizing the design of the LEDs in order to improve their efficiency are suggested on this basis.

Tài liệu tham khảo

N. Zheludev, Nature Photon. 1, 189 (2007). C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987). M. N. Bochkarev, A. G. Vitukhnovskii, and M. A. Katkova, Organic Light Emitting Diodes (OLED) (DEKOM, Nizh. Novgorod, 2011) [in Russian]. S. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993). Zh. I. Alferov, Semiconductors 32, 1 (1998). A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St.-Petersburg, 2011) [in Russian]. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovi, Nature 420, 800 (2002). A. A. Vashchenko, V. S. Lebedev, A. G. Vitukhnovskii, R. B. Vasil’ev, and I. G. Samatov, JETP Lett. 96, 113 (2012). P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, Nano Lett. 9, 2532 (2009). Y. Q. Zhang and X. A. Cao, Appl. Phys. Lett. 97, 253115 (2010). S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, Phys. Rev. B 82, 155201 (2010). C.-C. Tu, L. Tang, J. Huang, A. Voutsas, and L. Y. Lin, Appl. Phys. Lett. 98, 213102 (2011). T. Förster, Discuss. Faraday Soc. 27, 7 (1959). M. Anni, L. Manna, R. Cingolani, D. Valerini, A. Creti, and M. Lomascolo, Appl. Phys. Lett. 85, 4169 (2004). R. B. Vasil’ev, D. N. Dirin, and A. M. Gas’kov, Russ. Chem. Rev. 80, 1139 (2011). L. H. Qu, Z. A. Peng, and X. G. Peng, Nano Lett. 1, 333 (2001). W. Yu and X. Peng, Angew. Chem. Int. Ed. 41, 2368 (2002). R. B. Vasiliev, S. G. Dorofeev, D. N. Dirin, D. A. Belov, and T. A. Kuznetsova, Mendeleev Commun. 14, 169 (2004). W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003). Z. Shen, P. E. Burrows, V. Bulovic, D. M. McCarty, M. E. Thompson, and S. R. Forrest, Jpn. J. Appl. Phys. 35, 401 (1996). H. Kuhn, J. Chem. Phys. 53, 101 (1970). Th. Forster, Ann. Phys. 437, 55 (1948).