Mechanism of Arachidonic Acid Modulation of the T-type Ca2+ Channel α1G

Journal of General Physiology - Tập 124 Số 3 - Trang 225-238 - 2004
Karel Talavera1, Mik Staes1, Annelies Janssens1, Guy Droogmans1, Bernd Nilius1
1Laboratorium voor Fysiologie, Campus Gasthuisberg, KU Leuven, B-3000 Leuven, Belgium

Tóm tắt

Arachidonic acid (AA) modulates T-type Ca2+ channels and is therefore a potential regulator of diverse cell functions, including neuronal and cardiac excitability. The underlying mechanism of modulation is unknown. Here we analyze the effects of AA on the T-type Ca2+ channel α1G heterologously expressed in HEK-293 cells. AA inhibited α1G currents within a few minutes, regardless of preceding exposure to inhibitors of AA metabolism (ETYA and 17-ODYA). Current inhibition was also observed in cell-free inside-out patches, indicating a membrane-delimited interaction of AA with the channel. AA action was consistent with a decrease of the open probability without changes in the size of unitary currents. AA shifted the inactivation curve to more negative potentials, increased the speed of macroscopic inactivation, and decreased the extent of recovery from inactivation at −80 mV but not at −110 mV. AA induced a slight increase of activation near the threshold and did not significantly change the deactivation kinetics or the rectification pattern. We observed a tonic current inhibition, regardless of whether the channels were held in resting or inactivated states during AA perfusion, suggesting a state-independent interaction with the channel. Model simulations indicate that AA inhibits T-type currents by switching the channels into a nonavailable conformation and by affecting transitions between inactivated states, which results in the negative shift of the inactivation curve. Slow-inactivating α1G mutants showed an increased affinity for AA with respect to the wild type, indicating that the structural determinants of fast inactivation are involved in the AA–channel interaction.

Từ khóa


Tài liệu tham khảo

1990, Proc. Natl. Acad. Sci. USA., 87, 7334, 10.1073/pnas.87.18.7334

1997, Neurosci. Lett., 234, 59, 10.1016/S0304-3940(97)00673-3

2001, Am. J. Physiol. Cell Physiol., 280, C1306, 10.1152/ajpcell.2001.280.5.C1306

1989, Ann. NY Acad. Sci., 559, 1, 10.1111/j.1749-6632.1989.tb22594.x

1997, Am. J. Physiol., 272, C592, 10.1152/ajpcell.1997.272.2.C592

1998, Neuroscience., 86, 1291, 10.1016/S0306-4522(98)00079-7

2002, Biophys. J., 82, 1894, 10.1016/S0006-3495(02)75539-2

2001, EMBO J., 20, 7033, 10.1093/emboj/20.24.7033

2002, J. Neurosci., 22, 6856, 10.1523/JNEUROSCI.22-16-06856.2002

1990, J. Gen. Physiol., 96, 603, 10.1085/jgp.96.3.603

1994, J. Membr. Biol., 138, 159

1978, Arch. Int. Physiol. Biochim., 86, 1147

1998, Am. J. Physiol., 274, C149, 10.1152/ajpcell.1998.274.1.C149

1989, J. Physiol., 419, 627, 10.1113/jphysiol.1989.sp017890

1993, Neuron., 11, 633, 10.1016/0896-6273(93)90075-3

1999, Pflugers Arch., 438, 553

2003, J. Biol. Chem., 278, 16690, 10.1074/jbc.M212959200

2001, Jpn. J. Pharmacol., 85, 339, 10.1254/jjp.85.339

1996, Annu. Rev. Physiol., 58, 329, 10.1146/annurev.ph.58.030196.001553

1990, Proc. Natl. Acad. Sci. USA., 87, 5706, 10.1073/pnas.87.15.5706

2000, Am. J. Clin. Nutr., 71, 202S, 10.1093/ajcn/71.1.202S

2001, Pflugers Arch., 442, 952, 10.1007/s004240100626

2002, Brain Res., 950, 95, 10.1016/S0006-8993(02)03008-1

1999, J. Physiol., 519, 153, 10.1111/j.1469-7793.1999.0153o.x

1979, Clin. Exp. Hypertens., 1, 685, 10.3109/10641967909068632

1999, J. Physiol., 520, 671, 10.1111/j.1469-7793.1999.00671.x

2000, J. Physiol., 525, 391, 10.1111/j.1469-7793.2000.00391.x

2001, Am. J. Physiol. Cell Physiol., 280, C1293, 10.1152/ajpcell.2001.280.5.C1293

1998, Am. J. Physiol., 274, F175, 10.1152/ajpcell.1998.274.1.C175

2000, J. Biol. Chem., 275, 10128, 10.1074/jbc.275.14.10128

2001, J. Physiol., 537, 27, 10.1111/j.1469-7793.2001.0027k.x

1992, Nature., 355, 722, 10.1038/355722a0

1979, Eur. J. Pharmacol., 54, 217, 10.1016/0014-2999(79)90080-3

2003, FEBS Lett., 547, 37, 10.1016/S0014-5793(03)00665-3

1998, EMBO J., 17, 4283, 10.1093/emboj/17.15.4283

2003, Physiol. Rev., 83, 117, 10.1152/physrev.00018.2002

1996, J. Physiol., 493, 67, 10.1113/jphysiol.1996.sp021365

1993, Curr. Opin. Cell Biol., 5, 274, 10.1016/0955-0674(93)90116-8

2001, J. Biol. Chem., 276, 14855, 10.1074/jbc.M010097200

1995, J. Membr. Biol., 145, 233

1999, J. Gen. Physiol., 114, 185, 10.1085/jgp.114.2.185

2001, J. Physiol., 530, 35, 10.1111/j.1469-7793.2001.0035m.x

2003, J. Gen. Physiol., 121, 511, 10.1085/jgp.200308793

2003, J. Gen. Physiol., 121, 529, 10.1085/jgp.200308794

2001, Neuron., 31, 75, 10.1016/S0896-6273(01)00338-5

1996, Br. J. Pharmacol., 119, 213, 10.1111/j.1476-5381.1996.tb15973.x

1997, Prostaglandins Leukot. Essent. Fatty Acids., 57, 85, 10.1016/S0952-3278(97)90497-X

1994, J. Cardiovasc. Electrophysiol., 5, 376, 10.1111/j.1540-8167.1994.tb01175.x

1996, Proc. Natl. Acad. Sci. USA., 93, 12559, 10.1073/pnas.93.22.12559

1995, Proc. Natl. Acad. Sci. USA., 92, 11000, 10.1073/pnas.92.24.11000

2001, Proc. Natl. Acad. Sci. USA., 98, 3606, 10.1073/pnas.061003798

2000, Am. J. Physiol. Heart Circ. Physiol., 278, H184, 10.1152/ajpheart.2000.278.1.H184