Mechanically Durable and Flexible Thermoelectric Films from PEDOT:PSS/PVA/Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> Nanocomposites

Advanced Electronic Materials - Tập 3 Số 4 - 2017
Ting Zhang1, Kaiwei Li1, Chengchao Li2, Shaoyang Ma1, Huey Hoon Hng2, Lei Wei1
1School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
2School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Tóm tắt

Advances in organic thermoelectric materials have focused on the enhancement of mechanical property to address the limitations and needs of forming flexible and free‐standing films for the application of flexible/wearable thermoelectric devices. Herein, thermoelectric nanocomposite films are fabricated based on conductive polymer poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), plastic reinforcer polyvinyl alcohol (PVA), and inorganic Bi0.5Sb1.5Te3 thermoelectric nanocrystals with various contents. The resulting PEDOT:PSS/PVA/Bi0.5Sb1.5Te3 nanocomposite films exhibit a power factor of 47.7 µW m−1 K−2 and a ZT value of 0.05 at 300 K. More importantly, they are mechanically tough, yet very flexible with a tensile strength of 79.3 MPa and a fracture strain of 32.4%, which is sufficient to meet the required mechanical properties of textile manufacturing and body movements for flexible thermoelectric films, thus providing a substantial impact on future developments of flexible/wearable energy generation devices.

Từ khóa


Tài liệu tham khảo

10.1126/science.1158899

10.1126/science.1093164

10.1038/nmat2090

10.1002/adma.200600527

10.1038/nature06381

10.1016/j.nanoen.2015.03.011

10.1002/smll.201600501

10.1016/j.nanoen.2011.10.001

10.1038/35098012

10.1557/S0883769400031419

10.1146/annurev.matsci.29.1.89

10.1103/RevModPhys.86.669

10.1038/nmat3273

10.1021/nl8009928

10.1016/S0925-8388(00)01063-X

10.1063/1.2425007

10.1063/1.2900960

10.1002/smll.201602109

10.1002/adma.201400633

10.1002/aelm.201600260

10.1002/aelm.201500017

10.1016/j.progpolymsci.2011.11.003

10.1039/C4EE03297G

10.1021/nn1002562

10.1039/c2ee21803h

10.1007/s12274-014-0433-z

10.1016/j.synthmet.2012.04.005

10.1038/nmat3635

10.1038/nmat3012

10.1021/am507032e

10.1007/s11664-013-2587-y

10.1021/am5002772

10.1021/am100654p

10.1021/nl102880k

10.1016/j.synthmet.2008.11.005

10.1039/c3tc31241k

10.1063/1.4933254

10.1002/app.36474

10.1007/s12274-010-0030-8

10.1126/science.1072086

10.1007/s12221-015-5616-z

10.1021/acsnano.5b07355

10.1007/978-3-642-00716-3

10.1021/acs.jpcc.5b04175

10.1557/jmr.2012.273

10.1039/C6NR06950A

10.1103/PhysRevB.40.2806

10.1039/C5RA05551B

10.1021/nn9013577

10.1039/C4TA06710J

10.1039/C6TA00305B

10.1016/j.synthmet.2011.08.031

10.1177/0731684408100696

10.1002/marc.200390038