Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đo lường Chất lượng Phẫu thuật: Một Đăng ký Lâm sàng Quốc gia So với Dữ liệu Khiếu nại Hành chính
Tóm tắt
Nghiên cứu này so sánh các biến chứng sau phẫu thuật của bệnh nhân trải qua phẫu thuật tá tụy tá tràng (PD) được ghi nhận trong Chương trình Cải tiến Chất lượng Phẫu thuật Quốc gia (NSQIP) với bệnh nhân trải qua PD được ghi nhận trong Dự án Chi phí và Sử dụng Dịch vụ Y tế (HCUP) Mẫu Nội trú Quốc gia (NIS). Dữ liệu bao gồm 8.822 trường hợp PD được ghi nhận trong NSQIP và 9.827 trường hợp PD được ghi nhận trong NIS thực hiện từ năm 2005 đến 2010. Mười tám biến chứng bất lợi sau phẫu thuật đã được xác định trong NSQIP và sau đó được ghép nối với các mã phân loại quốc tế về bệnh tật, phiên bản sửa đổi lần thứ 9 (ICD-9-CM) tương ứng trong NIS. Sử dụng hồi quy logistic, mối quan hệ giữa cơ sở dữ liệu và các biến chứng sau phẫu thuật đã được xác định trong khi xem xét các yếu tố của bệnh nhân. Bệnh nhân trải qua PD trong NIS có nhiều khả năng gặp phải một số kết quả bất lợi như nhiễm trùng đường tiết niệu (tỷ lệ odds (OR) = 1.42, p < 0.001), viêm phổi (OR = 1.51, p < 0.001), suy thận (OR = 2.39, p < 0.001), suy thận cấp (OR = 1.67, p = 0.005), thất bại ghép/thiết bị giả (OR = 9.35, p < 0.001) và thời gian nằm viện lâu hơn (1.1 ngày, p < 0.001). Họ có ít khả năng gặp phải ngừng tim (OR = 0.45, p = 0.002), nhiễm trùng huyết sau phẫu thuật (OR = 0.38, p < 0.001), huyết khối tĩnh mạch sâu (OR = 0.18, p < 0.001), và đột quỵ (OR = 0.04, p = 0.003). Có sự không đồng nhất đáng kể giữa NSQIP và NIS trong việc đánh giá các biến chứng sau phẫu thuật sau PD, điều này nhấn mạnh giá trị của việc nhận thức khả năng và giới hạn của từng nguồn dữ liệu.
Từ khóa
Tài liệu tham khảo
Codman EA. A study in hospital efficiency : as demonstrated by the case report of the first five years of a private hospital. Boston: Th. Todd co.; 1918.
Iezzoni LI, Daley J, Heeren T, et al. Identifying complications of care using administrative data. Medical care. Jul 1994;32(7):700-715.
Iezzoni LI, Daley J, Heeren T, et al. Using administrative data to screen hospitals for high complication rates. Inquiry : a journal of medical care organization, provision and financing. Spring 1994;31(1):40-55.
Iezzoni LI. Assessing quality using administrative data. Annals of internal medicine. Oct 15 1997;127(8 Pt 2):666-674.
Roos LL, Sharp SM, Cohen MM, Wajda A. Risk adjustment in claims-based research: the search for efficient approaches. Journal of clinical epidemiology. 1989;42(12):1193-1206.
Garnick DW, Fowles J, Lawthers AG, Weiner JP, Parente ST, Palmer RH. Focus on quality: profiling physicians’ practice patterns. The Journal of ambulatory care management. Jul 1994;17(3):44-75.
Weingart SN, Iezzoni LI, Davis RB, et al. Use of administrative data to find substandard care: validation of the complications screening program. Medical care. Aug 2000;38(8):796-806.
Wray NP, Ashton CM, Kuykendall DH, Hollingsworth JC. Using administrative databases to evaluate the quality of medical care: a conceptual framework. Soc Sci Med. Jun 1995;40(12):1707-1715.
Kuykendall DH, Ashton CM, Johnson ML, Geraci JM. Identifying complications and low provider adherence to normative practices using administrative data. Health services research. Oct 1995;30(4):531-554.
Roos LL, Roos NP, Sharp SM. Monitoring adverse outcomes of surgery using administrative data. Health care financing review. Dec 1987;Spec No:5-16.
Jencks SF, Williams DK, Kay TL. Assessing hospital-associated deaths from discharge data. The role of length of stay and comorbidities. JAMA : the journal of the American Medical Association. Oct 21 1988;260(15):2240-2246.
Roos LL, Jr., Nicol JP, Cageorge SM. Using administrative data for longitudinal research: comparisons with primary data collection. Journal of chronic diseases. 1987;40(1):41-49.
Hsia DC, Krushat WM, Fagan AB, Tebbutt JA, Kusserow RP. Accuracy of diagnostic coding for Medicare patients under the prospective-payment system. The New England journal of medicine. Feb 11 1988;318(6):352-355.
Iezzoni LI. Using administrative diagnostic data to assess the quality of hospital care. Pitfalls and potential of ICD-9-CM. International journal of technology assessment in health care. 1990;6(2):272-281.
Fisher ES, Whaley FS, Krushat WM, et al. The accuracy of Medicare’s hospital claims data: progress has been made, but problems remain. American journal of public health. Feb 1992;82(2):243-248.
Hannan EL, Kilburn H, Jr., Lindsey ML, Lewis R. Clinical versus administrative data bases for CABG surgery. Does it matter? Medical care. Oct 1992;30(10):892-907.
Jencks SF. Accuracy in recorded diagnoses. JAMA: the journal of the American Medical Association. Apr 22-29 1992;267(16):2238-2239.
Romano PS, Chan BK, Schembri ME, Rainwater JA. Can administrative data be used to compare postoperative complication rates across hospitals? Medical care. Oct 2002;40(10):856-867.
Wright SB, Huskins WC, Dokholyan RS, Goldmann DA, Platt R. Administrative databases provide inaccurate data for surveillance of long-term central venous catheter-associated infections. Infection control and hospital epidemiology : the official journal of the Society of Hospital Epidemiologists of America. Dec 2003;24(12):946-949.
Lawthers AG, McCarthy EP, Davis RB, Peterson LE, Palmer RH, Iezzoni LI. Identification of in-hospital complications from claims data. Is it valid? Medical care. Aug 2000;38(8):785-795.
Romano PS, Mark DH. Bias in the coding of hospital discharge data and its implications for quality assessment. Medical care. Jan 1994;32(1):81-90.
Romano PS, Roos LL, Luft HS, Jollis JG, Doliszny K. A comparison of administrative versus clinical data: coronary artery bypass surgery as an example. Ischemic Heart Disease Patient Outcomes Research Team. Journal of clinical epidemiology. Mar 1994;47(3):249-260.
Best WR, Khuri SF, Phelan M, et al. Identifying patient preoperative risk factors and postoperative adverse events in administrative databases: results from the Department of Veterans Affairs National Surgical Quality Improvement Program. Journal of the American College of Surgeons. Mar 2002;194(3):257-266.
Shiloach M, Frencher SK, Jr., Steeger JE, et al. Toward robust information: data quality and inter-rater reliability in the American College of Surgeons National Surgical Quality Improvement Program. Journal of the American College of Surgeons. Jan 2010;210(1):6-16.
Fink AS, Campbell DA, Jr., Mentzer RM, Jr., et al. The National Surgical Quality Improvement Program in non-veterans administration hospitals: initial demonstration of feasibility. Annals of surgery. Sep 2002;236(3):344-353; discussion 353-344.
Khuri SF, Daley J, Henderson W, et al. The Department of Veterans Affairs’ NSQIP: the first national, validated, outcome-based, risk-adjusted, and peer-controlled program for the measurement and enhancement of the quality of surgical care. National VA Surgical Quality Improvement Program. Annals of surgery. Oct 1998;228(4):491-507.
ACS NSQIP Operations Manual. 2013.
HCUP Nationwide Inpatient Sample (NIS). 2004 - 2008; www.hcup-us.ahrq.gov/nisoverview.jsp.
Slee VN. The International Classification of Diseases: ninth revision (ICD-9). Annals of internal medicine. Mar 1978;88(3):424-426.
McMahon LF, Jr., Smits HL. Can Medicare prospective payment survive the ICD-9-CM disease classification system? Annals of internal medicine. Apr 1986;104(4):562-566.
Roos LL, Mustard CA, Nicol JP, et al. Registries and administrative data: organization and accuracy. Medical care. Mar 1993;31(3):201-212.
Lawson EH, Louie R, Zingmond DS, et al. A comparison of clinical registry versus administrative claims data for reporting of 30-day surgical complications. Annals of surgery. Dec 2012;256(6):973-981.
Cima RR, Lackore KA, Nehring SA, et al. How best to measure surgical quality? Comparison of the Agency for Healthcare Research and Quality Patient Safety Indicators (AHRQ-PSI) and the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) postoperative adverse events at a single institution. Surgery. Nov 2011;150(5):943-949.
Koch CG, Li L, Hixson E, Tang A, Phillips S, Henderson JM. What are the real rates of postoperative complications: elucidating inconsistencies between administrative and clinical data sources. Journal of the American College of Surgeons. May 2012;214(5):798-805.
Davenport DL, Holsapple CW, Conigliaro J. Assessing surgical quality using administrative and clinical data sets: a direct comparison of the University HealthSystem Consortium Clinical Database and the National Surgical Quality Improvement Program data set. American journal of medical quality : the official journal of the American College of Medical Quality. Sep-Oct 2009;24(5):395-402.
Romano PS, Schembri ME, Rainwater JA. Can administrative data be used to ascertain clinically significant postoperative complications? American journal of medical quality : the official journal of the American College of Medical Quality. Jul-Aug 2002;17(4):145-154.
Jollis JG, Ancukiewicz M, DeLong ER, Pryor DB, Muhlbaier LH, Mark DB. Discordance of databases designed for claims payment versus clinical information systems. Implications for outcomes research. Annals of internal medicine. Oct 15 1993;119(8):844-850.
Khuri SF, Henderson WG, Daley J, et al. Successful implementation of the Department of Veterans Affairs’ National Surgical Quality Improvement Program in the private sector: the Patient Safety in Surgery study. Annals of surgery. Aug 2008;248(2):329-336.
Jadad AR, Gagliardi A. Rating health information on the Internet: navigating to knowledge or to Babel? JAMA : the journal of the American Medical Association. Feb 25 1998;279(8):611-614.
Davis CL, Pierce JR, Henderson W, et al. Assessment of the reliability of data collected for the Department of Veterans Affairs national surgical quality improvement program. Journal of the American College of Surgeons. Apr 2007;204(4):550-560.
Daley J, Forbes MG, Young GJ, et al. Validating risk-adjusted surgical outcomes: site visit assessment of process and structure. National VA Surgical Risk Study. Journal of the American College of Surgeons. Oct 1997;185(4):341-351.
Gibbs J, Clark K, Khuri S, Henderson W, Hur K, Daley J. Validating risk-adjusted surgical outcomes: chart review of process of care. International journal for quality in health care : journal of the International Society for Quality in Health Care / ISQua. Jun 2001;13(3):187-196.
Mull HJ, Borzecki AM, Loveland S, et al. Detecting adverse events in surgery: comparing events detected by the Veterans Health Administration Surgical Quality Improvement Program and the Patient Safety Indicators. American journal of surgery. Nov 7 2013.
Romano PS, Mull HJ, Rivard PE, et al. Validity of selected AHRQ patient safety indicators based on VA National Surgical Quality Improvement Program data. Health services research. Feb 2009;44(1):182-204.