Đo lường tính không chặt chẽ trong không gian các hàm quy định trên một khoảng không bị chặn
Tóm tắt
Từ khóa
Tài liệu tham khảo
Banaś, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Math, vol. 60. Marcel Dekker, New York (1980)
Banaś, J., Zając, T.: On a measure of noncompactness in the space of regulated functions and its applications. Adv. Nonlinear Anal. (2019). https://doi.org/10.1515/anona-2018-0024
Bothe, D.: Multivalued perturbation of m-accretive differential inclusions. Isr. J. Math. 108, 109–138 (1998)
Cichoń, K., Cichoń, M., Metwali, M.A.: On some parameters in the space of regulated functions and their applications. Carpath. J. Math. 34(1), 17–30 (2018)
Cichoń, K., Cichoń, M., Satco, B.: On regulated functions. Fasc. Math. (2018). https://doi.org/10.1515/fasmath-2018-0003
Cichoń, K., Cichoń, M., Satco, B.: Measure differential inclusions through principles in the space of regulated functions. Mediterr. J. Math. 15, 148 (2018). https://doi.org/10.1007/s00009-018-1192-y1660-5446/18/040001-19
Drewnowski, L.: On Banach spaces of regulated functions. Comment. Math. 57(2), 153–169 (2017)
Dudek, S.: Fixed point theorems in Fréchet algebras and Fréchet spaces and applications to nonlinear integral equations. Appl. Anal. Discrete Math. 11, 340–357 (2017)
Dudek, S., Olszowy, L.: Measures of noncompactness and superposition operator in the space of regulated functions on an unbounded interval. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114–168 (2020)
Gabeleh, M., Malkowsky, E., Mursaleen, M., Rakočević, V.: A new survey of measures of noncompactness and their applications. Axioms 11, 299 (2022). https://doi.org/10.3390/axioms11060299
Michalak, A.: On superposition operators in spaces of regular and of bounded variation functions. Z. Anal. Anwend. 35, 285–308 (2016)
Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. TMA 4, 985–999 (1980)
Olszowy, L.: Fixed point theorems in the Fréchet space $C({\mathbb{R}}_{+})$ and functional integral equations on an unbounded interval. Appl. Math. Comput. 218, 9066–9074 (2012)