Measurement of Spatial Distributions of Electron Density and Electron Temperature in Direct Current Glow Discharge by Double Langmuir Probes

Plasma Chemistry and Plasma Processing - Tập 22 - Trang 297-311 - 2002
Wei-Han Tao1, Hirotsugu K. Yasuda2
1Department of Chemical Engineering, Chinese Culture University, Taipei, Taiwan, R.O.C.
2Center for Surface Science and Plasma Technology, Department of Chemical Engineering, University of Missouri-Columbia

Tóm tắt

The spatial distributions of electron temperature and density in a dc glow discharge that is created by a pair of planar electrodes were obtained by using double Langmuir probes. The contribution of double Langmuir probes measurement is to provide a relatively quantitative tool to identify the electron distribution behavior. Electrons gain energy from the imposed electric field, and electron temperature (Te) rises very sharply from the cathode to the leading edge of the negative glow where Te reaches the maximum. In this region, the number of electrons (Ne) is relatively small and does not increase much. The accelerated electrons lose energy by ionizing gas atoms, and Te decreases rapidly from the trailing edge of the negative glow and extends to the anode. Ne was observed to increase from the cathode to the anode, which is due to the electron impact ionization and electron movement. The electron density was observed to increase with increasing discharge voltage while the electron temperature remained approximately. At 800 V and 50 mTorr argon glow discharge, Te ranged from 15 to 52 eV and Ne ranged from 6.3×106/cm3 to 3.1×108/cm3 in the DC glow discharge, and Te and Ne were dependent on the axial position.

Từ khóa


Tài liệu tham khảo

K. S. Fancey and A. Matthews, Surface and Coatings Technology 33, 17 (1987).

B. Chapman, Glow Discharge Processes, Wiley, New York (1980).

H. U. Poll, M. Arzt, and K. H. Wickleder, Eur. Polym. J. 12, 505 (1976).

W. H. Tao, M. A. Prelas, and H. K. Yasuda, J. Vac. Sci. Technol. A 14, 2113 (1996).

H. K. Yasuda, B. H. Chun, D. L. Cho, T. J. Lin, and J. I. Antonelli, Corrosion J. 52, 169 (1996).

F. F. Chen, in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds., Academic, Boston (1965).

I. Langmuir, Collected Works, Vols. 3, 4, 5, C. G. Suits, eds., Pergamon Press, New York (1961).

P. E. Scott, D. K. Akulina, G. G. Leotta, E. Sindoni, and C. Wharton, Diagnostics for Fusion Reactor Conditions, CEC, Pergamon Press, New York (1983).

O. Auciello and D. L. Flamm, Plasma Diagnostics, Vol. 1, Discharge Parameters and Chemistry, O. Auciello and D. L. Flamm, eds., Academic Press (1988).

S. M. Rossnagel and H. R. Kaufman, J. Vac. Sci. Technol. A5, 2276 (1987).

B. E. Cherrington, Plasma Chem. Plasma Process. 2, 113 (1987).

S. P. Fusselman, H. K. Yasuda, J. B. Javedani, J. Chiang, and M. A. Prelas, J. Vac. Sci. Technol. A12, 3115 (1994).

N. Hershkowitz, in Plasma Diagnostics, Vol. 1, Discharge Parameters and Chemistry, O. Auciello and D. L. Flamm, eds, Academic, Boston (1989).

J. D. Swift and M. J. R. Schwar, Electric Probes for Plasma Diagnostics, American Elsevier, New York (1969).

A. E. Wendt, M. A. Lieberman, and H. Meuth, J. Vac. Sci. Technol. A6, 1827 (1988).

M. J. Goeckner, IEEE Transact. on Plasma Sci. 19(2), No. 2, 301 (1991).

H. Bingsen and C. Zhou, Surface and Coating Technol. 50, 111 (1992).

E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics, John Wiley and Sons, Inc., New York (1971).

V. N. Kondratev, Chemical Kinetics of Gas Reactions, Chap. 8, Pergamon Press, New York (1964).