Mean Residual Life Processes and Associated Submartingales

Springer Science and Business Media LLC - Tập 33 Số 1 - Trang 36-64 - 2020
Antoine-Marie Bogso1
1Department of Mathematics, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon

Tóm tắt

Từ khóa


Tài liệu tham khảo

Azéma, J., Yor, M.: Une solution simple au probleme de Skorokhod. In: Dellacharie, C., Meyer, P.A., Weil, M. (eds.) Séminaire de Probabilités XIII, pp. 90–115. Springer, Berlin (1979)

Beiglböck, M., Cox, A.M., Huesmann, M.: Optimal transport and Skorokhod embedding. Invent. math. 208(2), 327–400 (2017)

Bogso, A.-M.: MRL order, log-concavity and an application to peacocks. Stoch. Process. Appl. 125(4), 1282–1306 (2015)

Cox, A.: Skorokhod embeddings: non-centered target distributions, diffusions and minimality. PhD thesis, University of Bath (2004)

Cox, A., Hobson, D.: Skorokhod embeddings, minimality and non-centred target distributions. Probab. Theory Relat. Fields 135(3), 395–414 (2006)

Fallat, S., Lauritzen, S., Sadeghi, K., Uhler, C., Wermuth, N., Zwiernik, P.: Total positivity in Markov structures. Ann. Stat. 45(3), 1152–1184 (2017)

Hirsch, F., Profeta, C., Roynette, B., Yor, M.: Peacocks and Associated Martingales, with Explicit Constructions. Springer, Berlin (2011)

Hirsch, F., Roynette, B.: A new proof of Kellerer’s theorem. ESAIM Probab. Stat. 16, 48–60 (2012)

Juillet, N.: Peacocks parametrised by a partially ordered set. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds.) Séminaire de Probabilités XLVIII, pp. 13–32. Springer, Berlin (2016)

Jun Luo, S.: Two-parameter Markov processes. Stoch. Int. J. Probab. Stoch. Process. 40(3–4), 181–193 (1992)

Karlin, S.: Total positivity, absorption probabilities and applications. Trans. Am. Math. Soc. 111(1), 33–107 (1964)

Karlin, S.: Total Positivity. Number vol. 1 in Total Positivity. Stanford University Press, Stanford (1968)

Karlin, S., Rinott, Y.: Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions. J. Multivar. Anal. 10(4), 467–498 (1980)

Kemperman, J.H.B.: On the FKG-inequality for measures on a partially ordered space. In: Indagationes Mathematicae (Proceedings), vol. 80, pp. 313–331. Elsevier (1977)

Källblad, S., Tan, X., Touzi, N.: Optimal Skorokhod embedding given full marginals and Azéma–Yor peacocks. Ann. Appl. Probab. 27(2), 686–719 (2017)

Lim, A.P.C., Yen, J.-Y., Yor, M.: Some examples of Skorokhod embeddings obtained from the Azéma–Yor algorithm. Stoch. Process. Appl. 123(2), 329–346 (2013)

Lorentz, G.G.: An inequality for rearrangements. Am. Math. Mon. 60(3), 176–179 (1953)

Madan, D.B., Yor, M.: Making Markov martingales meet marginals: with explicit constructions. Bernoulli 8, 509–536 (2002)

Millet, A.: On convergence and regularity of two-parameter ( $$\delta $$ δ 1) submartingales. Ann. Inst. Henri Poincaré Probab. Stat. 19, 25–42 (1983)

Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, Chichester (2002)

Obłój, J.: The Skorokhod embedding problem and its offspring. Probab. Surv. 1, 321–392 (2004)

Ravaska, T.: On analytical methods for incomplete Markov random fields. Adv. Appl. Probab. 15(01), 99–112 (1983)

Revuz, D., Yor, M.: Continuous martingales and Brownian motion. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3rd edn. Springer, Berlin (1999)

Shaked, M., Shanthikumar, G.: Stochastic Orders. Springer, Berlin (2007)