Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hành vi giao phối và hình thái sinh sản dự đoán tiến hóa vĩ mô của phân bổ giới tính ở giun dẹp lưỡng tính
Tóm tắt
Phân bổ giới tính là sự phân phối nguồn lực cho việc sinh sản đực hoặc cái. Ở các loài lưỡng tính, vấn đề này liên quan đến việc phân bổ nguồn lực của một cá thể, chẳng hạn như vào việc sản xuất giao tử đực hoặc cái. Các nghiên cứu vi tiến hóa trên thực vật lưỡng tính đã chỉ ra rằng tỷ lệ tự thụ phấn và phương thức thụ phấn là những yếu tố dự đoán mạnh mẽ cho phân bổ giới tính. Do đó, chúng tôi mong đợi rằng các yếu tố tương tự như tỷ lệ tự thụ và các khía cạnh của sinh học sinh sản, như hành vi giao phối và cường độ chọn lọc giới tính sau giao phối, sẽ dự đoán phân bổ giới tính ở động vật lưỡng tính. Tuy nhiên, nghiên cứu so sánh về động vật lưỡng tính còn hạn chế. Ở đây, chúng tôi nghiên cứu phân bổ giới tính ở 120 loài giun dẹp lưỡng tính thuộc chi Macrostomum. Chúng tôi đặt câu hỏi về tác động của việc thụ tinh bằng kim tiêm, một hành vi giao phối đã tiến hóa hội tụ, nơi tinh trùng được tiêm xuyên qua biểu bì của bạn tình, đến tiến hóa của phân bổ giới tính. Chúng tôi cũng kiểm tra giả định thường được đưa ra rằng đầu tư vào sinh sản đực và cái sẽ có sự đánh đổi. Cuối cùng, chúng tôi hỏi liệu các chỉ số hình thái về cường độ chọn lọc giới tính sau giao phối (độ phức tạp của bộ phận sinh dục cái, chiều dài cơ quan giao phối đực và chiều dài tinh trùng) có thể dự đoán phân bổ giới tính hay không. Chúng tôi phát hiện rằng sự tiến hóa lặp lại của việc thụ tinh bằng kim tiêm dự đoán một phân bổ giới tính thiên về cái hơn (tức là, một sự thay đổi tương đối về phân bổ cho cái). Hơn nữa, ước lượng dựa trên hệ gen cho thấy độ đồng hợp tử giảm ở các loài giao phối bằng kim tiêm, cho thấy rằng hành vi giao phối này liên quan đến việc tăng cường tự thụ hoặc giao phối gần giữa hai bố mẹ. Do đó, thụ tinh bằng kim tiêm có thể đại diện cho một hội chứng tự thụ. Hơn nữa, trên toàn chi này, phân bổ cho giao tử đực và cái có mối quan hệ nghịch tăng, và các loài lớn hơn có phân bổ giới tính thiên về cái hơn. Cuối cùng, độ phức tạp cao hơn của bộ phận sinh dục cái, chiều dài tinh trùng dài hơn và chiều dài cơ quan giao phối đực dài hơn dự đoán một phân bổ giới tính thiên về đực hơn. Các hội chứng tự thụ đã nhiều lần xuất hiện ở thực vật. Đáng chú ý, mô hình vi tiến hóa này được tái hiện ở giun dẹp Macrostomum và liên quan đến những thay đổi lặp lại trong hành vi sinh sản. Chúng tôi cũng phát hiện sự đánh đổi giữa sinh sản đực và cái, một giả định cơ bản của hầu hết các lý thuyết về phân bổ giới tính. Ngoài ra, không có lý thuyết nào dự đoán việc phân bổ thiên về cái hơn ở các loài lớn hơn, cho thấy những con đường nghiên cứu trong tương lai. Cuối cùng, các chỉ số hình thái của việc chọn lọc giới tính sau giao phối mạnh mẽ dường như dự đoán sự cạnh tranh tinh trùng mạnh mẽ hơn.
Từ khóa
#phân bổ giới tính #hành vi giao phối #sinh sản lưỡng tính #giun dẹp #chọn lọc giới tínhTài liệu tham khảo
Charnov EL. The theory of sex allocation. Monogr Popul Biol. 1982;18:1–355.
West SA. Sex allocation. Princeton: Princeton University Press; 2009.
Hamilton WD. Extraordinary sex ratios. Science. 1967;156:477–88.
West SA, Shuker DM, Sheldon BC. Sex-ratio adjustment when relatives interact: a test of constraints on adaptation. Evolution. 2005;59:1211–28. https://doi.org/10.1111/j.0014-3820.2005.tb01772.x.
Frank SA. Hierarchical selection theory and sex ratios. II. on applying the theory, and a test with fig wasps. Evolution. 1985;39:949–64. https://doi.org/10.1111/j.1558-5646.1985.tb00440.x.
West SA, Herre EA. Stabilizing selection and variance in fig wasp sex ratios. Evolution. 1998;52:475. https://doi.org/10.2307/2411083.
Taylor PD. Intra-sex and inter-sex sibling interactions as sex ratio determinants. Nature. 1981;291:64–6. https://doi.org/10.1038/291064a0.
Charnov EL, Bull JJ, Maynard SJ. Why be an hermaphrodite? Nature. 1976;263:125–6. https://doi.org/10.1038/263125a0.
Charnov EL. Sex allocation and local mate competition in Barnacles. Mar Biol Lett. 1980;1:269–72.
Fischer EA. Sexual allocation in a simultaneously hermaphroditic coral reef fish. Am Nat. 1981;117:64–82. https://doi.org/10.1086/283686.
Charnov EL. Simultaneous hermaphroditism and sexual selection. Proc Natl Acad Sci U S A. 1979;76:2480–4.
Schärer L. Tests of sex allocation theory in simultaneously hermaphroditic animals. Evolution. 2009;63:1377–405. https://doi.org/10.1111/j.1558-5646.2009.00669.x.
Charlesworth D, Charlesworth B. Allocation of resources to male and female functions in hermaphrodites. Biol J Linnean Soc. 1981;15:57–74. https://doi.org/10.1111/j.1095-8312.1981.tb00748.x.
Charnov EL, Los-den Hartogh RL, Jones WT, van den Assem J. Sex ratio evolution in a variable environment. Nature. 1981;289:27–33. https://doi.org/10.1038/289027a0.
Charnov EL. Sperm competition and sex allocation in simultaneous hermaphrodites. Evol Ecol. 1996;10:457–62. https://doi.org/10.1007/BF01237878.
Pen I, Weissing FJ. Sperm competition and sex allocation in simultaneous hermaphrodites: a new look at Charnov’s invariance principle. Evol Ecol Res. 1999;1:517–25.
van Velzen E, Schärer L, Pen I. The effect of cryptic female choice on sex allocation in simultaneous hermaphrodites. Proc R Soc B. 2009;276:3123–31. https://doi.org/10.1098/rspb.2009.0566.
Schärer L, Pen I. Sex allocation and investment into pre- and post-copulatory traits in simultaneous hermaphrodites: the role of polyandry and local sperm competition. Philos Transact R Soc B Biol Sci. 2013;368:20120052. https://doi.org/10.1098/rstb.2012.0052.
de Jong TJ, Klinkhamer PGL. Evolutionary ecology of plant reproductive strategies. Cambridge; New York: Cambridge University Press; 2005.
Goldman DA, Willson MF. Sex allocation in functionally hermaphroditic plants: a review and critique. Bot Rev. 1986;52:157–94.
Klinkhamer PGL, de Jong TJ, Metz H. Sex and size in cosexual plants. Trends Ecol Evol. 1997;12:260–5. https://doi.org/10.1016/S0169-5347(97)01078-1.
Baeza JA. Sex allocation in a simultaneously hermaphroditic marine shrimp. Evolution. 2007;61:2360–73. https://doi.org/10.1111/j.1558-5646.2007.00199.x.
Singh P, Vellnow N, Schärer L. Variation in sex allocation plasticity in three closely related flatworm species. Ecol Evol. 2019:ece3.5566. https://doi.org/10.1002/ece3.5566.
Hart MK, Svoboda A, Mancilla CD. Phenotypic plasticity in sex allocation for a simultaneously hermaphroditic coral reef fish. Coral Reefs. 2011;30:543–8. https://doi.org/10.1007/s00338-011-0737-3.
Tamechika MM, Matsuno K, Wada S, Yusa Y. Different effects of mating group size as male and as female on sex allocation in a simultaneous hermaphrodite. Ecol Evol. 2020;10:2492–8. https://doi.org/10.1002/ece3.6075.
Winkler L, Ramm SA. Experimental evidence for reduced male allocation under selfing in a simultaneously hermaphroditic animal. Biol Lett. 2018;14:20180570. https://doi.org/10.1098/rsbl.2018.0570.
Johnston MO, Das B, Hoeh WR. Negative correlation between male allocation and rate of self-fertilization in a hermaphroditic animal. Proc Natl Acad Sci U S A. 1998;95:617–20.
Campbell DR. Experimental tests of sex-allocation theory in plants. Trends Ecol Evol. 2000;15:227–32. https://doi.org/10.1016/S0169-5347(00)01872-3.
Sicard A, Lenhard M. The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Ann Bot. 2011;107:1433–43. https://doi.org/10.1093/aob/mcr023.
Plitmann U, Levin DA. Breeding systems in the Polemoniaceae. Pl Syst Evol. 1990;170:205–14. https://doi.org/10.1007/BF00937704.
Barrett SCH, Harder LD, Worley AC. The comparative biology of pollination and mating in flowering plants. Phil Trans R Soc Lond B. 1996;351:1271–80. https://doi.org/10.1098/rstb.1996.0110.
Jürgens A, Witt T, Gottsberger G. Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number, and sexual system. Sex Plant Reprod. 2002;14:279–89. https://doi.org/10.1007/s00497-001-0124-2.
Paterno GB, Silveira CL, Kollmann J, Westoby M, Fonseca CR. The maleness of larger angiosperm flowers. Proc Natl Acad Sci USA. 2020;117:10921–6. https://doi.org/10.1073/pnas.1910631117.
Petersen CW. Sex allocation in hermaphroditic sea basses. Am Nat. 1991;138:650–67. https://doi.org/10.1086/285240.
St. Mary CM. Sex allocation in Lythrypnus (Gobiidae): variations on a hermaphroditic theme. Environ Biol Fishes. 2000;58:321–33. https://doi.org/10.1023/A:1007644010331.
Maxfield JM, Van Tassell JL, St. Mary CM, Joyeux J-C, Crow KD. Extreme gender flexibility: using a phylogenetic framework to infer the evolution of variation in sex allocation, phylogeography, and speciation in a genus of bidirectional sex changing fishes(Lythrypnus, Gobiidae). Mol Phylogenet Evol. 2012;64:416–27. https://doi.org/10.1016/j.ympev.2012.04.016.
Singh P, Schärer L. Self-fertilization, but not mating strategy, predicts the evolution of sex allocation plasticity in a hermaphroditic flatworm genus. bioRxiv. 2020. https://doi.org/10.1101/2020.06.12.149351.
Brunet J. Sex allocation in hermaphroditic plants. Trends Ecol Evol. 1992;7:79–84. https://doi.org/10.1016/0169-5347(92)90245-7.
Henshaw JM, Marshall DJ, Jennions MD, Kokko H. Local gamete competition explains sex allocation and fertilization strategies in the sea. Am Nat. 2014;184:E32–49. https://doi.org/10.1086/676641.
Levitan DR, Petersen C. Sperm limitation in the sea. Trends Ecol Evol. 1995;10:228–31. https://doi.org/10.1016/S0169-5347(00)89071-0.
Parker GA, Immler S, Pitnick S, Birkhead TR. Sperm competition games: Sperm size (mass) and number under raffle and displacement, and the evolution of P2. J Theor Biol. 2010;264:1003–23. https://doi.org/10.1016/j.jtbi.2010.03.003.
Schärer L, Ladurner P. Phenotypically plastic adjustment of sex allocation in a simultaneous hermaphrodite. Proc R Soc B Biol Sci. 2003;270:935–41. https://doi.org/10.1098/rspb.2002.2323.
Brand JN, Harmon LJ, Schärer L. Frequent origins of traumatic insemination involve convergent shifts in sperm and genital morphology. Evol Lett. 2022. https://doi.org/10.1002/evl3.268.
Schärer L, Littlewood DTJ, Waeschenbach A, Yoshida W, Vizoso DB. Mating behavior and the evolution of sperm design. Proc Natl Acad Sci. 2011;108:1490–5. https://doi.org/10.1073/pnas.1013892108.
Vizoso DB, Rieger G, Schärer L. Goings-on inside a worm: functional hypotheses derived from sexual conflict thinking. Biol J Linnean Soc. 2010;99:370–83.
Luther A. Untersuchungen an rhabdocoelen Turbellarien VI. Macrostomiden aus Finnland. Fauna Fennica. 1947;49:1–38.
Schärer L, Joss G, Sandner P. Mating behaviour of the marine turbellarian Macrostomum sp.: these worms suck. Mar Biol. 2004;145:373–80. https://doi.org/10.1007/s00227-004-1314-x.
Patlar B, Weber M, Temizyürek T, Ramm SA. Seminal fluid-mediated manipulation of post-mating behavior in a simultaneous hermaphrodite. Curr Biol. 2020;30:143–9. https://doi.org/10.1016/j.cub.2019.11.018.
Weber M, Patlar B, Ramm SA. Effects of two seminal fluid transcripts on post-mating behaviour in the simultaneously hermaphroditic flatworm Macrostomum lignano. J Evol Biol. 2020:jeb.13606. https://doi.org/10.1111/jeb.13606.
Schärer L, Janicke T. Sex allocation and sexual conflict in simultaneously hermaphroditic animals. Biol Lett. 2009;5:705–8. https://doi.org/10.1098/rsbl.2009.0100.
Parker GA. Sperm competition games: raffles and roles. Proc R Soc London Ser B Biol Sci. 1990;242:120–6. https://doi.org/10.1098/rspb.1990.0114.
Parker GA. Selection on non-random fusion of gametes during the evolution of anisogamy. J Theor Biol. 1978;73:1–28. https://doi.org/10.1016/0022-5193(78)90177-7.
Parker GA. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J Theor Biol. 1982;281–94.
Parker GA. Sperm competition games: sperm size and sperm number under adult control. Proc R Soc London Ser B Biol Sci. 1993;253:245–54. https://doi.org/10.1098/rspb.1993.0110.
Immler S, Pitnick S, Parker GA, Durrant KL, Lüpold S, Calhim S, et al. Resolving variation in the reproductive tradeoff between sperm size and number. PNAS. 2011;108:5325–30. https://doi.org/10.1073/pnas.1009059108.
Ramm SA, Vizoso DB, Schärer L. Occurrence, costs and heritability of delayed selfing in a free-living flatworm. J Evol Biol. 2012;25:2559–68. https://doi.org/10.1111/jeb.12012.
Ramm SA, Schlatter A, Poirier M, Schärer L. Hypodermic self-insemination as a reproductive assurance strategy. Proc R Soc Biol Sci. 2015;282:20150660. https://doi.org/10.1098/rspb.2015.0660.
Giannakara A, Ramm SA. Self-fertilization, sex allocation and spermatogenesis kinetics in the hypodermically inseminating flatworm Macrostomum pusillum. J Exp Biol. 2017;220:1568–77. https://doi.org/10.1242/jeb.149682.
Brand JN, Viktorin G, Wiberg RAW, Beisel C, Schärer L. Large-scale phylogenomics of the genus Macrostomum (Platyhelminthes) reveals cryptic diversity and novel sexual traits. Mol Phylogenet Evol. 2022;166:107296. https://doi.org/10.1016/j.ympev.2021.107296.
Boucher FC. BBMV: an R package for the estimation of macroevolutionary landscapes. Ecography. 2019;42:558–64. https://doi.org/10.1111/ecog.04045.
Boucher FC, Démery V, Conti E, Harmon LJ, Uyeda J. A general model for estimating macroevolutionary landscapes. Syst Biol. 2018;67:304–19. https://doi.org/10.1093/sysbio/syx075.
Falconer DS, Mackay T. Introduction to quantitative genetics. 4. ed., [16. print.]. Harlow: Pearson, Prentice Hall; 2009.
Davidson NM, Hawkins ADK, Oshlack A. SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes. Genome Biol. 2017;18:148. https://doi.org/10.1186/s13059-017-1284-1.
Gallardo R, Dominguez E, Muñoz JM. Pollen-ovule ratio, pollen size, and breeding system in Astragalus (Fabaceae) subgenus Epiglottis: a pollen and seed allocation approach. Am J Bot. 1994;81:1611–9. https://doi.org/10.1002/j.1537-2197.1994.tb11473.x.
Damgaard C, Abbott RJ. Positive correlations between selfing rate and pollen-ovule ratio within plant populations. Evolution. 1995;49:214–7.
Galloni M, Podda L, Vivarelli D, Cristofolini G. Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean Legumes (Fam. Fabaceae - Subfam. Faboideae). Plant Syst Evol. 2007;266:147–64. https://doi.org/10.1007/s00606-007-0526-1.
Escobar JS, Auld JR, Correa AC, Alonso JM, Bony YK, Coutellec M-A, et al. Patterns of mating-system evolution in hermaphroditic animals: correlations among selfing rate, inbreeding depression, and the timing of reproduction. Evolution. 2011;65:1233–53. https://doi.org/10.1111/j.1558-5646.2011.01218.x.
Noël E, Chemtob Y, Janicke T, Sarda V, Pélissié B, Jarne P, et al. Reduced mate availability leads to evolution of self-fertilization and purging of inbreeding depression in a hermaphrodite: selfing evolution in a hermaphroditic snail. Evolution. 2016;70:625–40. https://doi.org/10.1111/evo.12886.
Tian-Bi Y-NT, N’goran EK, N’guetta S-P, Matthys B, Sangare A, Jarne P. Prior selfing and the selfing syndrome in animals: an experimental approach in the freshwater snail Biomphalaria pfeifferi. Genet Res. 2008;90:61–72. https://doi.org/10.1017/S0016672307008919.
Kiontke KC, Félix M-A, Ailion M, Rockman MV, Braendle C, Pénigault J-B, et al. A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol. 2011;11:339. https://doi.org/10.1186/1471-2148-11-339.
Cutter AD. Reproductive transitions in plants and animals: selfing syndrome, sexual selection and speciation. New Phytol. 2019;224:1080–94. https://doi.org/10.1111/nph.16075.
Cutter AD. Caenorhabditis evolution in the wild. BioEssays. 2015;37:983–95. https://doi.org/10.1002/bies.201500053.
Hughes RN, Wright PJ, Carvalho GR, Hutchinson WF. Patterns of self compatibility, inbreeding depression, outcrossing, and sex allocation in a marine bryozoan suggest the predominating influence of sperm competition. Biol J Linnean Soc. 2009;98:519–31. https://doi.org/10.1111/j.1095-8312.2009.01312.x.
Weinzierl RP, Berthold K, Beukeboom LW, Michiels NK. Reduced male allocation in the parthenogenetic hermaphrodite Dugesia polychroa. Evolution. 1998;52:109–15. https://doi.org/10.1111/j.1558-5646.1998.tb05143.x.
Weinzierl RP, Schmidt P, Michiels NK. High fecundity and low fertility in parthenogenetic planarians. Invert Biol. 1999;118:87. https://doi.org/10.2307/3227051.
Janssen T, Vizoso DB, Schulte G, Littlewood DTJ, Waeschenbach A, Schärer L. The first multi-gene phylogeny of the Macrostomorpha sheds light on the evolution of sexual and asexual reproduction in basal Platyhelminthes. Mol Phylogenet Evol. 2015;92:82–107. https://doi.org/10.1016/j.ympev.2015.06.004.
Michiels NK, Newman LJ. Sex and violence in hermaphrodites. Nature. 1998;391:647.
Macdonald S, Caley J. Sexual reproduction in the monogenean <I>Diclidophora merlangi</i>: tissue penetration by sperms. Z Parasitenk. 1975;45:323–34. https://doi.org/10.1007/BF00329822.
Llewellyn J. Sperm transfer in the monogenean gill parasite Gastrocotyle trachuri. Proc R Soc London Ser B Biol Sci. 1983;219:439–46. https://doi.org/10.1098/rspb.1983.0083.
Lange R, Reinhardt K, Michiels NK, Anthes N. Functions, diversity, and evolution of traumatic mating: function and evolution of traumatic mating. Biol Rev. 2013;88:585–601. https://doi.org/10.1111/brv.12018.
Tatarnic NJ. Traumatic insemination and copulatory wounding. Reference Module in Life Sciences: Elsevier; 2018. https://doi.org/10.1016/B978-0-12-809633-8.20730-9.
Apelt G. Fortpflanzungsbiologie, Entwicklungszyklen und vergleichende Frühentwicklung acoeler Turbellarien. Mar Biol. 1969;4:59.
Stebbins GL. Self fertilization and population variability in the higher plants. Am Nat. 1957;91:337–54.
Glémin S, François CM, Galtier N. Genome evolution in outcrossing vs. selfing vs. asexual species. In: Anisimova M, editor. Evolutionary Genomics: Statistical and Computational Methods. New York: Springer; 2019. p. 331–69. https://doi.org/10.1007/978-1-4939-9074-0_11.
Gremigni V. Platyhelminthes-Turbellaria. Reproductive Biology of Invertebrates, Vol 1 Oogenesis, oviposition, and oosorption. New York: Wiley; 1983. p. 67–107.
Gremigni V, Falleni A, Lucchesi P. An ultrastructural study of oogenesis in the Turbellarian Macrostomum. Acta Embryol Morphol Exper. 1987;8:257–62.
Van Noordwijk AJ, de Jong G. Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat. 1986;128:137–42.
Reznick D, Nunney L, Tessier A. Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol Evol. 2000;15:421–5. https://doi.org/10.1016/S0169-5347(00)01941-8.
Schärer L, Sandner P, Michiels NK. Trade-off between male and female allocation in the simultaneously hermaphroditic flatworm Macrostomum sp. J Evol Biol. 2005;18:396–404. https://doi.org/10.1111/j.1420-9101.2004.00827.x.
Simmons LW, Lüpold S, Fitzpatrick JL. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol Evol. 2017;32:964–76. https://doi.org/10.1016/j.tree.2017.09.011.
Vizoso DB, Schärer L. Resource-dependent sex-allocation in a simultaneous hermaphrodite. J Evol Biol. 2007;20:1046–55. https://doi.org/10.1111/j.1420-9101.2007.01294.x.
Teixido AL, Valladares F. Heat and drought determine flower female allocation in a hermaphroditic Mediterranean plant family. Plant Biology. 2019;21:1024–30. https://doi.org/10.1111/plb.13031.
Angeloni L, Bradbury JW, Charnov EL. Body size and sex allocation in simultaneously hermaphroditic animals. Behav Ecol. 2002;13:419–26. https://doi.org/10.1093/beheco/13.3.419.
Angeloni L. Sexual selection in a simultaneous hermaphrodite with hypodermic insemination: body size, allocation to sexual roles and paternity. Anim Behav. 2003;66:417–26. https://doi.org/10.1006/anbe.2003.2255.
Gage MJ. Associations between body size, mating pattern, testis size and sperm lengths across butterflies. Proc R Soc Lond B. 1994;258:247–54. https://doi.org/10.1098/rspb.1994.0169.
Pitnick S. Investment in testes and the cost of making long sperm in Drosophila. Am Nat. 1996;148:57–80. https://doi.org/10.1086/285911.
Rowley A, Locatello L, Kahrl A, Rego M, Boussard A, Garza-Gisholt E, et al. Sexual selection and the evolution of sperm morphology in sharks. J Evol Biol. 2019;32:1027–35. https://doi.org/10.1111/jeb.13501.
Gage MJG, Freckleton RP. Relative testis size and sperm morphometry across mammals: no evidence for an association between sperm competition and sperm length. Proc R Soc London Ser B Biol Sci. 2003;270:625–32. https://doi.org/10.1098/rspb.2002.2258.
Pitnick S, Markow TA, Spicer GS. Delayed male maturity is a cost of producing large sperm in Drosophila. Proc Natl Acad Sci. 1995;92:10614–8. https://doi.org/10.1073/pnas.92.23.10614.
LaMunyon CW, Ward S. Evolution of sperm size in nematodes: sperm competition favours larger sperm. Proc R Soc B Biol Sci. 1999;266:263–7. https://doi.org/10.1098/rspb.1999.0631.
Lüpold S, Linz GM, Rivers JW, Westneat DF, Birkhead TR. Sperm competition selects beyond relative testes size in birds. Evolution. 2009;63:391–402. https://doi.org/10.1111/j.1558-5646.2008.00571.x.
Ramm SA, Stockley P. Sperm competition and sperm length influence the rate of mammalian spermatogenesis. Biol Lett. 2010;6:219–21. https://doi.org/10.1098/rsbl.2009.0635.
Schärer L, Brand JN, Singh P, Zadesenets KS, Stelzer C-P, Viktorin G. A phylogenetically informed search for an alternative Macrostomum model species, with notes on taxonomy, mating behavior, karyology, and genome size. J Zool Syst Evol Res. 2020;58:41–65. https://doi.org/10.1111/jzs.12344.
Zadesenets KS, Jetybayev IY, Schärer L, Rubtsov NB. Genome and karyotype reorganization after whole genome duplication in free-living flatworms of the genus Macrostomum. IJMS. 2020;21:680. https://doi.org/10.3390/ijms21020680.
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5. https://doi.org/10.1038/nmeth.2089.
Janicke T, Marie-Orleach L, De Mulder K, Berezikov E, Ladurner P, Vizoso DB, et al. Sex allocation adjustment to mating group size in a simultaneous hermaphrodite. Evolution. 2013;67:3233–42. https://doi.org/10.1111/evo.12189.
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;11:11.10.1-11.10.33. https://doi.org/10.1002/0471250953.bi1110s43.
Wolak ME, Fairbairn DJ, Paulsen YR. Guidelines for estimating repeatability. Methods Ecol Evol. 2012;3:129–37. https://doi.org/10.1111/j.2041-210X.2011.00125.x.
Sheather SJ, Jones MC. A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Ser B (Methodological). 1991;53:683–90.
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things): phytools: R package. Methods Ecol Evol. 2012;3:217–23. https://doi.org/10.1111/j.2041-210X.2011.00169.x.
Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125:1–15. https://doi.org/10.1086/284325.
Cooper N, Thomas GH, Venditti C, Meade A, Freckleton RP. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol J Linn Soc. 2016;118:64–77. https://doi.org/10.1111/bij.12701.
Ives AR. R2s for correlated data: phylogenetic models, lmms, and glmms. Syst Biol. 2019;68:234–51. https://doi.org/10.1093/sysbio/syy060.
Ives A, Li D. rr2: An R package to calculate R2s for regression models. JOSS. 2018;3:1028. https://doi.org/10.21105/joss.01028.
