Toán học và giáo dục STEM liên ngành: những phát triển gần đây và hướng đi trong tương lai

ZDM - Tập 55 Số 7 - Trang 1199-1217 - 2023
Merrilyn Goos, Susana Carreira1, Immaculate Kizito Namukasa2
1University of Lisbon, Lisbon, Portugal
2Western University, London, Canada

Tóm tắt

Tóm tắtChuyên đề đặc biệt này giới thiệu nghiên cứu gần đây về toán học trong giáo dục STEM liên ngành. Giáo dục STEM được các chính phủ trên thế giới khuyến khích rộng rãi như một cách tăng cường sự quan tâm và đạt được thành tựu của học sinh trong khoa học, công nghệ, kỹ thuật và toán học, đồng thời chuẩn bị nguồn nhân lực STEM có trình độ cho các nghề nghiệp thế kỷ XXI. Tuy nhiên, vai trò của toán học trong giáo dục STEM thường có vẻ yếu kém, và chúng ta chưa hiểu rõ về cách mà toán học góp phần vào việc giải quyết vấn đề dựa trên STEM hoặc cách mà trải nghiệm giáo dục STEM nâng cao việc học toán của học sinh. Trong bài báo khảo sát này, chúng tôi trình bày một đánh giá kể lại về tài liệu nghiên cứu thực nghiệm và khái niệm, được công bố từ năm 2017 đến 2022. Những nguồn tài liệu này được tổ chức theo một khuôn khổ bao gồm năm cụm chủ đề: (1) mô hình và phương pháp giảng dạy liên ngành; (2) kết quả và trải nghiệm của học sinh; (3) chuẩn bị giáo viên và phát triển nghề nghiệp; (4) thực hiện trong lớp học và thiết kế nhiệm vụ; và (5) chính sách, cấu trúc và lãnh đạo. Chúng tôi sử dụng khuôn khổ này để cung cấp cái nhìn tổng quan về các bài báo trong số này và đề xuất hướng nghiên cứu trong tương lai. Những hướng nghiên cứu này bao gồm: điều tra các phương pháp và lý do kết nối các ngành STEM cấu thành để bảo tồn tính toàn vẹn của toán học; làm rõ ý nghĩa của sự "thành công" của học sinh trong các chương trình, dự án và phương pháp giáo dục STEM liên ngành; vượt ra ngoài các thực hành trong lớp có vị trí toán học chỉ như một công cụ để giải quyết vấn đề trong các lĩnh vực khác; hiểu điều gì làm cho một nhiệm vụ STEM trở nên phong phú về mặt toán học; và đặt câu hỏi về cách mà nghiên cứu giáo dục STEM có thể hình thành chính sách giáo dục STEM một cách hiệu quả.

Từ khóa

#Toán học #giáo dục STEM #giáo dục liên ngành #phản biện giáo dục #thành công của học sinh

Tài liệu tham khảo

*Abboud, M., Hoppenot, P., & Rollinde, E. (2019). Enhancing mathematics and science learning through the use of a human orrery. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the eleventh congress of the european society for research in mathematics education (pp. 4721–4728). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

*Anderson, J., & Tully, D. (2021). Factors which sustain integrated STEM curriculum approaches in secondary school settings. In D. Anderson, M. Milner-Bolotin, R. Santos, & S. Petrina (Eds.), Proceedings of the 6th International STEM in Education Conference (STEM 2021) (pp. 20–26). University of British Columbia, Vancouver, Canada, July 5–9. University of British Columbia. https://doi.org/10.14288/1.0402129

Anderson, J., English, L., Fitzallen, N., & Symons, D. (2020). The contribution of mathematics education researchers to the current STEM education agenda. In J. Way, C. Attard, J. Anderson, J. Bobis, H. McMaster, & K. Cartwright (Eds.), Research in mathematics education in Australasia 2016–2019 (pp. 27–57). Springer. https://doi.org/10.1007/978-981-15-4269-5_3

Anderson, J., Holmes, K., Tully, D., & Williams, G. (2017). STEM professional learning: Evaluating secondary school teachers’ and students’ experiences. In A. Downton, S. Livy, & J. Hall (Eds.), Proceedings of the 40th annual conference of the Mathematics Education Research Group of Australasia (pp. 586–603). MERGA.

*Anderson, J., & Katrak, Z. (2017). Higher order thinking, engagement and connectedness in lessons based on STEM contexts. In B. Kaur, W. K. Ho, T. L. Toh, & B. H. Choy (Eds.), Proceedings of the 41st conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 97–104). PME.

*Anderson, J., & Tully, D. (2020). Designing and evaluating an integrated STEM professional development program for secondary and primary school teachers in Australia. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education (pp. 403–425). Springer. https://doi.org/10.1007/978-3-030-52229-2_22

*Anderson, J., Wilson, K., Tully, D., & Way, J. (2019). “Can we build the wind powered car again?” Students’ and teachers’ responses to a new integrated STEM curriculum. Journal of Research in STEM Education, 5(1), 20–39. https://doi.org/10.51355/jstem.2019.61

*Arnone, K., & Hanuscin, D. (2019). An exploratory cross-sectional survey study of elementary teachers’ conceptions and methods of STEM integration. Journal of Research in STEM Education, 4(2), 159–178. https://doi.org/10.51355/jstem.2018.43

*Aydeniz, M., & Bilican, K. (2018). The impact of engagement in STEM activities on primary pre-service teachers’ conceptualization of STEM and knowledge of STEM pedagogy. Journal for Research in STEM Education, 4(2), 213–234. https://doi.org/10.51355/jstem.2018.46

*Baldinger, E., Staats, S., Clarkson, L., Gullickson, E., Norman, F., & Akoto, B. (2020). A review of conceptions of secondary mathematics in integrated STEM education: Returning voice to the silent M. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education (pp. 67–90). Springer. https://doi.org/10.1007/978-3-030-52229-2_5

*Beswick, K., & Fraser, S. (2019). Developing mathematics teachers’ 21st century competence for teaching in STEM contexts. ZDM, 51(6), 955–965. https://doi.org/10.1007/s11858-019-01084-2

*Bock, W., Bracke, M., & Capraro, P. (2019). Mathematical modeling of musical fountains and light organs - Where is the M in interdisciplinary STEM projects? In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 4739–4746). Utrecht, the Netherlands: Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

Breiner, J., Jarkness, S., Johnson, C., & Koehler, C. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3–11. https://doi.org/10.1111/j.1949-8594.2011.00109.x

*Brown, R. E., & Bogiages, C. A. (2018). Professional development through STEM integration: How early career math and science teachers respond to experiencing integrated STEM tasks. International Journal of Science and Mathematics Education, 17(1), 111–128. https://doi.org/10.1007/s10763-017-9863-x

*Chorney, S., & Lin, A. (2021). Animating the inquiry process on climate change through learning of mathematical and communicative literacies. In D. Anderson, M. Milner-Bolotin, R. Santos, & S. Petrina (Eds.), Proceedings of the 6th International STEM in Education Conference (STEM 2021) (pp. 94–99). University of British Columbia, Vancouver, Canada, July 5–9. University of British Columbia. https://doi.org/10.14288/1.0402129

*Conner, A., Crawford, B., Foutz, T., Hill, R., Jackson, D., Kim, C., & Thompson, S. (2020). Argumentation in primary grades STEM instruction: Examining teachers’ beliefs and practices in the USA. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education (pp. 427–446). Springer. https://doi.org/10.1007/978-3-030-52229-2_23

*Costa, M., & Domingos, A. (2019). Promoting mathematics teaching in the framework of STEM integration. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 4749–4756). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

*Costa, M., Domingos, A., & Teodoro, V. (2020). Promoting integrated STEM tasks in the framework of teachers’ professional development in Portugal. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education (pp. 511–532). Springer. https://doi.org/10.1007/978-3-030-52229-2_27

*Coxon, S. V., Dohrman, R. L., & Nadler, D. R. (2018). Children using robotics for engineering, science, technology, and math (CREST-M): The development and evaluation of an engaging math curriculum. Roeper Review, 40(2), 86–96. https://doi.org/10.1080/02783193.2018.1434711

*den Braber, N., Kruger, J., Mazereeuw, M., & Kuiper, W. (2019). Reflecting on the value of mathematics in an interdisciplinary STEM course. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 4757–4764). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

Department of Education and Skills, Ireland (2017). STEM education policy statement 2017–2026. Retrieved 11 December 2017 from https://www.education.ie/en/The-Education-System/STEM-Education-Policy/stem-education-policy-statement-2017-2026-.pdf

*Dickes, A., Farris, V., & Sengupta, P. (2020). Sociomathematical norms for integrating coding and modeling with elementary science: A dialogical approach. Journal of Science Education and Technology, 29(1), 35–52. https://doi.org/10.1007/s10956-019-09795-7

Doig, B., Williams, J., Swanson, D., Borromeo Ferri, R., & Drake, P. (Eds.). (2019). Interdisciplinary mathematics education: The state of the art and beyond. Springer. https://doi.org/10.1007/978-3-030-11066-6

Education Bureau of Government of Hong Kong SAR. (2016). Report on promotion of STEM education: Unleashing potential in innovation. Retrieved from https://www.edb.gov.hk/attachment/en/curriculum-development/renewal/STEM%20Education%20Report_Eng.pdf

English, L. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education. https://doi.org/10.1186/s40594-016-0036-1

European Schoolnet. (2017). STEM education. http://www.eun.org/focus-areas/stem

*Evans, P., Dillard, K., Rodriguez-Wilhelm, D., & McAlister-Shields, L. (2019). Like-minded people: University-based interdisciplinary collaborations in STEM teacher preparation programs. Journal for STEM Education Research, 2, 35–54. https://doi.org/10.1007/s41979-019-00011-0

*Falloon, G., Stevenson, M., Beswick, K., Fraser, S., & Geiger, V. (2021). Building STEM in schools: An Australian cross-case analysis. Educational Technology & Society, 24(4), 110–122. https://www.jstor.org/stable/48629249

Fitzallen, N. (2015). STEM education: What does mathematics have to offer? In M. Marshman, V. Geiger, & A. Bennison (Eds.), Mathematics education in the margins (Proceedings of the 38th annual conference of the Mathematics Education Research Group of Australasia) (pp. 237–244). MERGA.

*Fitzallen, N., Wright, S., & Watson, J. (2019). Focusing on data: Year 5 students making STEM connections. Journal of Research in STEM Education, 5(1), 1–19. https://doi.org/10.51355/jstem.2019.60

Furley, P., & Goldschmied, N. (2021). Systematic vs. narrative reviews in sport and exercise psychology: Is either approach superior to the other? Frontiers in Psychology, 12, 685082. https://doi.org/10.3389/fpsyg.2021.685082

*Galanti, T. M., & Holincheck, N. (2022). Beyond content and curriculum in elementary classrooms: Conceptualizing the cultivation of integrated STEM teacher identity. International Journal of STEM Education, 9, 43. https://doi.org/10.1186/s40594-022-00358-8

*Gao, X., Li, P., Shen, J., & Sun, H. (2020). Reviewing assessment of student learning in interdisciplinary STEM education. International Journal of STEM Education. https://doi.org/10.1186/s40594-020-00225-4

Goos, M., & Bennison, A. (2018). Boundary crossing and brokering between disciplines in pre-service mathematics teacher education. Mathematics Education Research Journal, 30, 255–275. https://doi.org/10.1007/s13394-017-0232-4

*Henriques, A., Oliveira, H., & Baptista, M. (2020). Promoting a learning scenario for an integrated approach to STEM: Prospective teachers’ perspectives in Portugal. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education (pp. 385–402). Springer. https://doi.org/10.1007/978-3-030-52229-2_21

*Hernández-Zavaleta, J., Becker, S., Clark, D., Brady, C., & Major, N. (2021). Students’ computational thinking in two mathematics block-based programming environments: Research during Covid-19. In D. Anderson, M. Milner-Bolotin, R. Santos, & S. Petrina (Eds.), Proceedings of the 6th International STEM in Education Conference (STEM 2021) (pp.208–215). University of British Columbia, Vancouver, Canada, July 5–9. University of British Columbia. https://doi.org/10.14288/1.0402129

Hobbs, L., Clark, J. C., & Plant, B. (2018). Successful students – STEM program: Teacher learning through a multifaceted vision for STEM education. In R. Jorgensen & K. Larkin (Eds.), STEM education in the junior secondary: The state of play (pp. 133–168). Springer Nature. https://doi.org/10.1007/978-981-10-5448-8_8

Hobbs, L., Doig, B., & Plant, B. (2019). The successful students STEM project: A medium scale case study. In B. Doig, J. Williams, D. Swanson, R. Borromeo Ferri, & P. Drake (Eds.), Interdisciplinary mathematics education: State of the art and beyond (pp. 209–228). Springer Open. https://doi.org/10.1007/978-3-030-11066-6_13

Honey, M., Pearson, G., & Schweingruber, A. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. National Academies Press. https://doi.org/10.17226/18612

Hoyles, C., & Noss, R. (2020). Online seminar series on programming in mathematics education. (C. Bateau, & G. Gadanidis, Eds.) Retrieved August 2, 2023, from Mathematics Knowledge Network: http://mkn-rcm.ca/online-seminar-series-on-programming-in-mathematics-education/

Ingvarson, L., Schwille, J., Tatto, M., Rowley, G., Peck, R., & Senk, S. (2013). An analysis of teacher education context, structure, and quality-assurance arrangements in TEDS-M countries. IEA. https://www.iea.nl/sites/default/files/2019-04/TEDS-M_Findings.pdf

Just, J., & Siller, H. (2022). The role of mathematics in STEM secondary classrooms: A systematic literature review. Education Sciences, 12, 629. https://doi.org/10.3390/educsci12090629

*Kelana, J. B., Wardani, D. S., Firdaus, A. R., Altaftazani, D. H., & Rahayu, G. D. S. (2020). The effect of STEM approach on the mathematics literacy ability of elementary school teacher education students. Journal of Physics. Conference Series, 1657(1), 12006. https://doi.org/10.1088/1742-6596/1657/1/012006

Kelley, T., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education. https://doi.org/10.1186/s40594-016-0046-z

*Kim, Y. R., Park, M. S., & Tjoe, H. (2021). Discovering concepts of geometry through robotics coding activities. International Journal of Education in Mathematics, Science and Technology, 9(3), 406–425. https://doi.org/10.46328/ijemst.1205

Lane, C., Kaya-Capocci, S., Kelly, R., O’Connell, T., & Goos, M. (2022). Fascinating or dull? Female students’ attitudes towards STEM subjects and careers. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2022.959972

*Lee, Y., Capraro, R. M., & Bicer, A. (2019). Affective mathematics engagement: A comparison of STEM PBL versus non-STEM PBL instruction. Canadian Journal of Science, Mathematics and Technology Education, 19(3), 270–289. https://doi.org/10.1007/s42330-019-00050-0

Leung, A. (2018). Pólya’s problem solving cycle as a boundary object for the STEM disciplines’ inquiry processes. In Integrated education for the real world (Post-conference proceedings of the 5th International STEM in Education Conference, pp. 205–212). Queensland University of Technology, November 21–23.

*Leung, A. (2020). Boundary crossing pedagogy in STEM education. International Journal of STEM Education, 7, 15. https://doi.org/10.1186/s40594-020-00212-9

*Leung, A. (2021). Realizing STEM heuristic in a mathematics problem solving activity. In D. Anderson, M. Milner-Bolotin, R. Santos, & S. Petrina (Eds.), Proceedings of the 6th International STEM in Education Conference (STEM 2021) (pp.242–248). University of British Columbia, Vancouver, Canada, July 5–9. University of British Columbia. https://doi.org/10.14288/1.0402129

Li, Y. (2022). Eight years of development in welcoming and engaging diverse scholars to share and promote STEM education research worldwide. International Journal of STEM Education. https://doi.org/10.1186/s40594-022-00385-5

*Li, Y., & Anderson, J. (2020). Focusing on students and their experiences in and through integrated STEM education. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education (pp. 177–183). Springer. https://doi.org/10.1007/978-3-030-52229-2_10

Li, Y., Froyd, J., & Wang, K. (2019). Learning about research and readership development in STEM education: A systematic analysis of the journal’s publications from 2014 to 2018. International Journal of STEM Education, 6, 19. https://doi.org/10.1186/s40594-019-0176-1

Li, Y., Wang, K., Xiao, Y., & Froyd, J. (2022). Research and trends in STEM education: A systematic review of journal publications. International Journal of STEM Education. https://doi.org/10.1186/s40594-020-00207-6

*Liu, J., & Zhang, Q. (2021). Rethinking authentic assessment in mathematics education: A holistic review. In M. Inprasitha, N. Changsri, & N. Boonsena (Eds.), Proceedings of the 44th conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 206–213). PME.

*Lockwood, E., DeChenne, A., & Valdes-Fernandez, S. (2019). Affordances of solving counting problems in a computational environment. In M. Graven, H. Venkat, A. Essien, & P. Vale (Eds.), Proceedings of the 43rd conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 41–48). PME.

*Maass, K., Geiger, V., Romero Ariza, M., & Goos, M. (2019). The role of mathematics in interdisciplinary STEM education. ZDM Mathematics Education, 51(6), 869–884. https://doi.org/10.1007/s11858-019-01100-5

*Margot, K., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM Education. https://doi.org/10.1186/s40594-018-0151-2

*Mayes, R., Rittschof, K., Gallant, B., & Martin, C. (2017). Real STEM: An interdisciplinary STEM program. Journal of Research in STEM Education, 3(1/2), 1–16. https://doi.org/10.51355/jstem.2017.26

Namukasa, I. K., Hughes, J., & Scucuglia, R. (2022). STEAM and critical making in teacher education. In M. Danesi (Ed.), Handbook of cognitive mathematics (Vol. 2, pp. 939–970). Springer. https://doi.org/10.1007/978-3-030-44982-7_15-1

National Research Council. (2001). Adding it up: Helping children learn mathematics. National Academies Press. https://doi.org/10.17226/9822

National Research Council. (2011). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press. https://doi.org/10.17226/13165

OECD. (2018). The future of education and skills: Education 2030. OECD. https://www.oecd.org/education/2030/E2030%20Position%20Paper%20(05.04.2018).pdf

Office of the Chief Scientist. (2014). Science, technology, engineering and mathematics: Australia’s future. Australian Government.

*Oliveira, H., Henriques, A., & Baptista, M. (2019). Pre-service teachers’ perspectives on the role of statistics in a learning scenario for promoting STEM integration. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 4783–4790). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

Pei, C., Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking practices and mathematical habits of mind in Lattice Land. Mathematical Thinking and Learning, 20(1), 75–89. https://doi.org/10.1080/10986065.2018.1403543

*Preciado-Babb, A., & Friesen, S. (2021). Does school mathematics support STEM education? Exploring specialised mathematics knowledge for STEM education. In D. Anderson, M. Milner-Bolotin, R. Santos, & S. Petrina (Eds.), Proceedings of the 6th International STEM in Education Conference (STEM 2021) (pp.331–336). University of British Columbia, Vancouver, Canada, July 5–9. University of British Columbia. https://doi.org/10.14288/1.0402129

*Rabin, J. M., Burgasser, A., Bussey, T. J., Eggers, J., Lo, S., Seethaler, S., Stevens, L., & Weizman, H. (2021). Interdisciplinary conversations in STEM education: Can faculty understand each other better than their students do? International Journal of STEM Education, 8, 11. https://doi.org/10.1186/s40594-020-00266-9

*Raymond, K. (2018). M is not just for STEM: How myths about the purposes of mathematics education have narrowed mathematics curricula in the United States. Education Sciences, 8(2), 47. https://doi.org/10.3390/educsci8020047

*Reinholz, D., Slominski, T., French, T., Pazicni, S., Rasmussen, C., & McCoy, B. (2018). Good problems within and across disciplines. Journal of Research in STEM Education, 4(1), 37–53. https://doi.org/10.51355/jstem.2018.34

Roehrig, G. H., Dare, E. A., Ellis, J. A., & Ring-Whalen, E. (2021). Beyond the basics: A detailed conceptual framework of integrated STEM. Disciplinary and Interdisciplinary Science Education Research, 3(1), 1–18. https://doi.org/10.1186/s43031-021-00041-y

*Shernoff, D., Sinha, S., Bressler, D., & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education. https://doi.org/10.1186/s40594-017-0068-1

*Shriki, A., & Lavy, I. (2017). Mathematics and sciences teachers collaboratively design interdisciplinary lesson plans: A possible reality or wishful thinking? In B. Kaur, W. K. Ho, T. L. Toh, & B. H. Choy (Eds.), Proceedings of the 41st conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 201–208). PME.

Sinclair, N., & Patterson, M. (2018). The dynamic geometrisation of computer programming. Mathematical Thinking and Learning, 20(1), 54–74. https://doi.org/10.1080/10986065.2018.1403541

*Siregar, N. C., Rosli, R., Maat, S. M., & Capraro, M. M. (2020). The effect of science, technology, engineering and mathematics (STEM) program on students’ achievement in mathematics: A meta-analysis. International Electronic Journal of Mathematics Education, 15(1), em0549. https://doi.org/10.29333/iejme/5885

*Steffensen, L. (2020). Climate change and students; critical competencies: A Norwegian study. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education (pp. 271–293). Springer. https://doi.org/10.1007/978-3-030-52229-2_15

*Stohlmann, M. (2020). STEM integration for high school mathematics teachers. Journal of Research in STEM Education, 6(1), 52–63. https://doi.org/10.51355/jstem.2020.71

Sutton, A., Clowes, M., Preston, L., & Booth, A. (2019). Meeting the review family: Exploring review types and associated information retrieval requirements. Health Information and Libraries Journal, 36, 202–222.

*Thom, J., Nicol, C., Fritzlan, A., Francis, K., Glanfield, F., & Ghostkeeper, E. (2021). Re-storying the M in STEM: How mathematics education might/can shape STEM and STEM education. In D. Anderson, M. Milner-Bolotin, R. Santos, & S. Petrina (Eds.), Proceedings of the 6th International STEM in Education Conference (STEM 2021) (pp.375–380). University of British Columbia, Vancouver, Canada, July 5–9. University of British Columbia. https://doi.org/10.14288/1.0402129

*Touitou, I., Schneider, B., & Krajcik, J. (2020). Incorporating mathematical thinking and engineering design into high school STEM physics: A case study. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education (pp. 313–329). Springer. https://doi.org/10.1007/978-3-030-52229-2_17

*Tytler, R. (2020). STEM education for the twenty-first century. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education (pp. 21–43). Springer. https://doi.org/10.1007/978-3-030-52229-2_3

Ubuz, B., Stephan, M. Cascella, C., & Den Braber, N. (2022). Introduction to the papers of TWG26: Mathematics in the context of STEM education. In J. Hodgen, E. Geraniou, G. Bolondi, & F. Ferretti (Eds.), Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12). (pp. 4536–4542). Free University of Bozen-Bolzano, Italy and ERME.

*Ubuz, B., Gravemeijer, K., Stephan, M., & Capraro, P. (2019). Introduction to TWG26: Mathematics in the context of STEM education. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (CERME11) (pp. 4713–4720). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

Vasquez, J., Sneider, C., & Comer, M. (2013). STEM lesson essentials, grades 3–8: Integrating science, technology, engineering, and mathematics. Heinemann.

*Walker, L. H., & Sherman, H. J. (2017). Common core and STEM opportunities. The Mathematics Enthusiast, 14(1–3), 413–434. https://doi.org/10.54870/1551-3440.1405

Watson, A., & Ohtani, M. (Eds.). (2015). Task design in mathematics education: An ICMI Study 22. Springer. https://doi.org/10.1007/978-3-319-09629-2_1

*Watson, J., Fitzallen, N., & Chick, H. (2020). What is the role of statistics in integrating STEM education? In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education (pp. 91–115). Springer. https://doi.org/10.1007/978-3-030-52229-2_6

*Zhao, F., & Schuchardt, A. (2021). Development of the sci-math sensemaking framework: Categorizing sensemaking of mathematical equations in science. International Journal of STEM Education, 8, 10. https://doi.org/10.1186/s40594-020-00264-x