Mathematical modeling and simulation in animal health – Part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment

Journal of Veterinary Pharmacology and Therapeutics - Tập 39 Số 5 - Trang 421-438 - 2016
Zhoumeng Lin1, Ronette Gehring1, Jonathan P. Mochel2, Thierry Lavé2, Jim E. Riviere1
1Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
2Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland

Tóm tắt

This review provides a tutorial for individuals interested in quantitative veterinary pharmacology and toxicology and offers a basis for establishing guidelines for physiologically based pharmacokinetic (PBPK) model development and application in veterinary medicine. This is important as the application of PBPK modeling in veterinary medicine has evolved over the past two decades. PBPK models can be used to predict drug tissue residues and withdrawal times in food‐producing animals, to estimate chemical concentrations at the site of action and target organ toxicity to aid risk assessment of environmental contaminants and/or drugs in both domestic animals and wildlife, as well as to help design therapeutic regimens for veterinary drugs. This review provides a comprehensive summary of PBPK modeling principles, model development methodology, and the current applications in veterinary medicine, with a focus on predictions of drug tissue residues and withdrawal times in food‐producing animals. The advantages and disadvantages of PBPK modeling compared to other pharmacokinetic modeling approaches (i.e., classical compartmental/noncompartmental modeling, nonlinear mixed‐effects modeling, and interspecies allometric scaling) are further presented. The review finally discusses contemporary challenges and our perspectives on model documentation, evaluation criteria, quality improvement, and offers solutions to increase model acceptance and applications in veterinary pharmacology and toxicology.

Từ khóa


Tài liệu tham khảo

Achenbach T.E.(2000)Physiological and classical pharmacokinetic models of oxytetracycline in cattle. Thesis for Master of Science pp.1–129.Department of Biological Sciences Simon Fraser University Burnaby BC Canada.

10.1016/S0169-409X(01)00179-X

10.1073/pnas.1404402111

10.1016/S0378-4274(02)00375-2

10.1016/j.foodchem.2013.04.035

10.3109/17435390.2014.940404

10.1016/j.ejps.2014.02.002

Baynes R.E., 2014, Strategies for Reducing Drug and Chemical Residues in Food Animals: International Approaches to Residue Avoidance, Management, and Testing, 1, 10.1002/9781118872819

Beal S.L., 1982, Estimating population kinetics, Critical Reviews in Biomedical Engineering, 8, 195

10.1007/BF01062336

10.1111/j.1420-9101.2007.01438.x

Brocklebank J.R., 1997, An oxytetracycline residue depletion study to assess the physiologically based pharmokinetic (PBPK) model in farmed Atlantic salmon, The Canadian Veterinary Journal, 38, 645

10.1177/074823379701300401

10.2460/ajvr.2005.66.1686

10.1128/AAC.01355-05

10.1016/j.yrtph.2008.05.003

10.1016/j.rvsc.2008.07.003

10.1007/s10928-013-9332-2

10.1093/toxsci/kfn054

10.1111/j.1365-2885.2009.01073.x

10.1046/j.1365-2885.2003.00451.x

10.1016/j.toxlet.2011.05.1036

10.1111/j.1365-2885.1987.tb00094.x

10.1023/A:1018943613122

10.1016/j.envres.2015.03.011

10.2903/j.efsa.2015.3978

EMA(2014)Concept paper on qualification and reporting of physiologically‐based pharmacokinetic (PBPK) modelling and analyses pp.1–4.European Medicines Agency (EMA) London UK. Available at:http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/2006/WC500169452.pdf.

EMEA/CVMP, 1996, Note for Guidance: Approach Towards Harmonisation of Withdrawal Periods, 1

10.1016/j.taap.2013.09.007

EPA(2006)Approaches for the application of physiologically based pharmacokinetic (PBPK) models and supporting data in risk assessment. EPA/600/R‐05/043F.National Center for Environmental Assessment Washington DC pp.1–123.. Available at:http://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryID=157668.

10.1093/toxsci/54.1.71

FDA, 2006, Guidance for Industry – General Principles for Evaluating the Safety of Compounds Used in Food‐Producing Animals, 1

10.1016/j.chemosphere.2010.02.010

10.1111/bcpt.12148

10.1002/prca.201400147

10.1517/17425255.2014.934671

10.1208/s12248-009-9098-z

Huang L., 2015, Estimation of residue depletion of cyadox and its marker residue in edible tissues of pigs using physiologically based pharmacokinetic modelling, Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 32, 2002

10.1111/jvp.12174

Iyengar G.V.(1982)Elemental composition of human and animal milk pp.1–197. A technical document issued by theInternational Atomic Energy Agency Vienna.

10.1038/psp.2013.41

10.1002/cpt.37

10.1007/BF03261928

10.1111/j.1365-2885.1993.tb00211.x

10.1002/jps.22442

10.1080/00498250701534885

Law F.C.P.(1992)A physiologically based pharmacokinetic model of oxytetracycline for salmonids. InNew Frontiers in Pharmacology.Proceedings of the 8th Biennial Symposium of the American Academy of Veterinary Pharmacology and Therapeutics and the American College of Veterinary Clinical Pharmacology pp.33–43 22–26 June Guelph Ontario.

10.1007/978-1-4615-4703-7_8

10.1111/j.1365-2885.2011.01304.x

10.1080/19440049.2014.938363

10.1021/nn1018818

10.1208/s12248-014-9640-5

10.1128/AAC.02806-14

10.1002/jps.24341

10.1016/j.taap.2010.11.009

10.1016/j.taap.2013.08.010

10.1002/jps.24244

10.1002/wnan.1304

10.2217/nnm.15.177

Lin Z., 2016, A physiologically based pharmacokinetic model for polyethylene glycol‐coated gold nanoparticles of different sizes in adult mice, Nanotoxicology, 10, 162

10.1007/978-1-4614-3055-1_6

10.1016/j.reprotox.2011.07.003

10.1021/jm960163r

10.1080/02652030802669170

10.1080/19440040903296683

10.1111/j.1365-2885.2006.00786.x

10.3109/08958378.2012.712165

10.1016/S0169-409X(02)00071-6

10.1016/S0169-409X(02)00070-4

10.1111/j.1365-2885.2006.00787.x

10.1046/j.1365-2885.1998.00121.x

10.1093/toxsci/kfr295

Mistry B. Pade D. Rostami‐Hodjegan A. Jamei M.&Martinez M.(2013)Use of in silico physiologically based pharmacokinetic (PBPK) models to predict food effects in dogs.The 2013 American Association of Pharmaceutical Scientists (AAPS) Annual Meeting and Exposition. November 10–14 2013 San Antonio Texas.http://www.certara.com/images/uploads/files/AAPS2013_Martinez_FDA_FINAL.pdf(accessed 30 March 2016).

10.1111/bph.12604

10.1046/j.1365-2885.2001.00362.x

10.1016/j.ejpb.2015.09.009

10.2307/1267101

Pade D.(2015)The best meds for man's best friend: PBPK models for animal health. Available at:http://info.certara.com/roundtable/simcyp-veterinary-drug-development-pbpk-model(accessed 1 December 2015).

Pade D., 2015, Use of physiologically based pharmacokinetic (PBPK) models to support canine drug product development, Journal of Veterinary Pharmacology and Therapeutics, 38, 99

10.1208/s12248-015-9743-7

10.1002/9781118140291.ch1

10.1016/j.taap.2010.09.010

Potočnik K., 2011, Mare's milk: composition and protein fraction in comparison with different milk species, Mljekarstvo, 61, 107

10.1080/15287399509532021

10.1002/(SICI)1520-6017(200001)89:1<16::AID-JPS3>3.0.CO;2-E

10.1039/C4EN00043A

10.1002/0471478768

10.1111/j.1365-2885.1990.tb00797.x

Riviere J.E., 1997, Basic principles and techniques of pharmacokinetic modeling, Journal of Zoo and Wildlife Medicine, 28, 3

Riviere J.E., 2009, Veterinary Pharmacology & Therapeutics, 47

10.1002/9780470959916

10.1046/j.1365-2885.1997.00095.x

10.1111/jvp.12278

10.1208/ps060106

10.1146/annurev-pharmtox-010510-100540

10.1124/dmd.115.065920

10.2217/nnm.14.60

Shen D.D., 2013, Casarett and Doull's Toxicology – The Basic Science of Poisons, 367

10.1016/j.vascn.2011.04.008

10.1016/j.yrtph.2013.10.005

10.1016/j.chemosphere.2009.09.044

10.1016/S0034-5288(03)00143-7

Teorell T., 1937, Kinetics of distribution of substances administered to the body. I. The extravascular modes of administration, Archives Internationales de Pharmacodynamie et de Thérapie, 57, 205

10.1002/jps.24214

10.1080/15287394.2012.652059

10.1016/j.vascn.2008.08.001

USDA, 2015, United States National Residue Program Quarterly Report (Jan–Mar 2015), 1

10.1007/s40262-014-0188-4

10.1007/s40262-015-0330-y

10.1021/es101688h

10.1016/j.taap.2011.07.020

10.1016/j.envpol.2011.12.037

10.1021/es400386a

10.1016/j.chemosphere.2013.09.019

WHO, 2010, Characterization and application of physiologically based pharmacokinetic models in risk assessment, 1

10.1111/j.1365-2885.2012.01420.x

10.1016/j.fct.2013.10.018

10.1166/jnn.2010.2687

10.1080/19440049.2011.624126

10.1111/j.1365-2885.2012.01419.x

10.1111/jvp.12053

10.1111/jvp.12137.

10.1371/journal.pone.0106101

10.1111/jvp.12162

10.1111/jvp.12143

10.1093/toxsci/kfp198

10.1111/j.1365-2885.2010.01230.x

10.1038/clpt.2010.298

10.1007/s11095-015-1703-5