Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

Scientific Reports - Tập 6 Số 1
Gang Niu1, Hee‐Dong Kim2, Robin Roelofs3, Eduardo Pérez4, Markus Andreas Schubert4, P. Zaumseil4, I. Costina4, Christian Wenger4
1Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China
2Department of Electronics, Information & Communication Engineering, Sejong University, Neungdong-ro 209, Gwangjin-gu, 143-747, Seoul, Korea
3ASM, Kapeldreef 75, Leuven, 3001, Belgium
4IHP GmbH/Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, Frankfurt (Oder), 15236, Germany

Tóm tắt

Abstract

With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

Từ khóa


Tài liệu tham khảo

Waser, R. & Aono, M. Nanoionics-based Resistive Switching Memories. Nat. Mater. 6, 833–840 (2007).

Walczyk, C. et al. Impact of Temperature on the Resistive Switching Behavior of Embedded HfO2-Based RRAM Devices. IEEE Trans. Electron. Devices 58, 3124–3131 (2011).

Zangeneh, M. & Joshi, A. Design and Optimization of Nonvolatile Multibit 1T1R Resistive RAM. IEEE Trans. VLSI Syst. 22, 1815–1828 (2014).

Zhang, K. Embedded Memories for Nano-Scale VLSIs. (Springer-Verlag 2009).

Bez, R., Cappelletti, P., Casagrande, G. & Pirovano, A. In Memories in Wireless Systems (eds Rino Micheloni, Giovanni Campardo, & Piero Olivo ) (Springer-Verlag 2009).

Wong, H. S. P. et al. Metal-Oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

Mistry, K. et al. In Electron Devices Meeting (IEDM), IEEE International. 247–250 (2010).

Johnson, R. W., Hultqvist, A. & Bent, S. F. A Brief Review of Atomic Layer Deposition: from Fundamentals to Applications. Mater. Today 17, 236–246 (2014).

Granneman, E., Fischer, P., Pierreux, D., Terhorst, H. & Zagwijn, P. Batch ALD: Characteristics, Comparison with Single Wafer ALD, and Examples. Surf. Coat. Technol. 201, 8899–8907 (2007).

Kwon, D.-H. et al. Atomic Structure of Conducting Nanofilaments in TiO2 Resistive Switching Memory. Nat. Nano. 5, 148–153 (2010).

Calka, P. et al. Chemical and Structural Properties of Conducting Nanofilaments in TiN/HfO2-Based Resistive Switching Structures. Nanotechnology 24, 085706 (2013).

Gao, B. et al. Oxide-based RRAM: Uniformity Improvement Using A New Material-Oriented Methodology. VLSI Technology, 2009 Symposium on, 30–31 (2009).

Chen, Y. Y. et al. Tailoring Switching and Endurance / Retention Reliability Characteristics of HfO2 / Hf RRAM with Ti, Al, Si Dopants. VLSI Technology, 2009 Symposium on, 1–2 (2014).

Sharath, S. U. et al. Towards Forming-Free Resistive Switching in Oxygen Engineered HfO2−x . Appl. Phys. Lett. 104, 063502 (2014).

Zheng, L. et al. Controlled Direct Growth of Al2O3-Doped HfO2 Films on Graphene by H2O-Based Atomic Layer Deposition. Phys. Chem. Chem. Phys. 17, 3179–3185 (2015).

Niu, G. et al. Geometric Conductive Filament Confinement by Nanotips for Resistive Switching of HfO2-RRAM Devices with High Performance. Sci. Rep. 6, 25757 (2016).

Zhang, Z., Yi, W., Wong, H. S. P. & Wong, S. S. Nanometer-Scale HfOx RRAM. IEEE Electron Device Lett. 34, 1005–1007 (2013).

Fang, R.-C. et al. High-Performance Bilayer Flexible Resistive Random Access Memory Based on Low-Temperature Thermal Atomic Layer Deposition. Nanoscale Res. Lett. 8, 92 (2013).

Sharath, S. U. et al. Thickness Independent Reduced Forming Voltage in Oxygen Engineered HfO2 Based Resistive Switching Memories. Appl. Phys. Lett. 105, 073505 (2014).

Huang, C.-Y., Huang, C.-Y., Tsai, T.-L., Lin, C.-A. & Tseng, T.-Y. Switching Mechanism of Double Forming Process Phenomenon in ZrOx/HfOy Bilayer Resistive Switching Memory Structure with Large Endurance. Appl. Phys. Lett. 104, 062901 (2014).

Lee, M.-J. et al. A Fast, High-Endurance and Scalable Non-Volatile Memory Device Made from Asymmetric Ta2O5−x/TaO2−x Bilayer Structures. Nat. Mater. 10, 625–630 (2011).

Dingemans, G. et al. Merits of Batch ALD. ECS Trans. 64, 35–49 (2014).

Choi, M., Lyons, J. L., Janotti, A. & Van de Walle, C. G. Impact of Carbon and Nitrogen Impurities in High-κ Dielectrics on Metal-Oxide-Semiconductor Devices. Appl. Phys. Lett. 102, 142902 (2013).

Lorenzi, P., Rao, R. & Irrera, F. Forming Kinetics in HfO2-Based RRAM Cells. IEEE Trans. Electron. Devices 60, 438–443 (2013).

Prakash, A., Jana, D. & Maikap, S. TaOx-Based Resistive Switching Memories: Prospective and Challenges. Nanoscale Res. Lett. 8, 418 (2013).

Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 21, 2632–2663 (2009).

Yang, Y. et al. Observation of Conducting Filament Growth in Nanoscale Resistive Memories. Nat. Commun. 3, 732 (2012).

Sawa, A. Resistive Switching in Transition Metal Oxides. Mater. Today 11, 28–36 (2008).

Nardi, F., Larentis, S., Balatti, S., Gilmer, D. C. & Ielmini, D. Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM–Part I: Experimental Study. IEEE Trans. Electron. Devices 59, 2461–2467 (2012).

Lee, M. H. & Hwang, C. S. Resistive Switching Memory: Observations with Scanning Probe Microscopy. Nanoscale 3, 490–502 (2011).

Celano, U. et al. Filament Observation in Metal-Oxide Resistive Switching Devices. Appl. Phys. Lett. 102, 121602 (2013).

Zhang, M. et al. Set Statistics in Conductive Bridge Random Access Memory Device With Cu/HfO2/Pt Structure. Appl. Phys. Lett. 105, 193501 (2014).

Yoon, J.-W., Yoon, J. H., Lee, J.-H. & Hwang, C. S. Impedance Spectroscopic Analysis on Effects of Partial Oxidation of TiN Bottom Electrode and Microstructure of Amorphous and Crystalline HfO2 Thin Films on Their Bipolar Resistive Switching. Nanoscale 6, 6668–6678 (2014).

Chen, H.-Y. et al. In Electron Devices Meeting (IEDM), IEEE International. 20.27.21–20.27.24 (2012).

Lin, K.-L. et al. Electrode Dependence of Filament formation in HfO2 Resistive-Switching Memory. J. Appl. Phys. 109, 084104 (2011).

Walczyk, C. et al. On the Role of Ti Adlayers for Resistive Switching in HfO2-Based Metal-Insulator-Metal Structures: Top Versus Bottom Electrode Integration. J. Vac. Sci. Technol. B 29, 01AD02 (2011).

Bertaud, T. et al. In-Operando and Non-Destructive Analysis of the Resistive Switching in the Ti/HfO2/TiN-Based System by Hard X-Ray Photoelectron Spectroscopy. Appl. Phys. Lett. 101, 143501 (2012).

Sowinska, M. et al. Hard X-Ray Photoelectron Spectroscopy Study of the Electroforming in Ti/HfO2-Based Resistive Switching Structures. Appl. Phys. Lett. 100, 233509 (2012).

Kim, H., McIntyre, P. C., On Chui, C., Saraswat, K. C. & Stemmer, S. Engineering Chemically Abrupt High-k Metal Oxide/Silicon Interfaces Using An Oxygen-Gettering Metal Overlayer. J. Appl. Phys. 96, 3467–3472 (2004).

Goncharova, L. V. et al. Metal-Gate-Induced Reduction of the Interfacial Layer in Hf Oxide Gate Stacks. J. Vac. Sci. Technol. A 25, 261–268 (2007).

Miranda, E. A., Walczyk, C., Wenger, C. & Schroeder, T. Model for the Resistive Switching Effect in HfO2 MIM Structures Based on the Transmission Properties of Narrow Constrictions. IEEE Electron. Device Letters 31, 609–611 (2010).

Long, S. et al. Voltage and Power-Controlled Regimes in the Progressive Unipolar RESET Transition of HfO2-Based RRAM. Sci. Rep. 3, 2929 (2013).

Huang, C.-Y., Jieng, J.-H., Jang, W.-Y., Lin, C.-H. & Tseng, T.-Y. Improved Resistive Switching Characteristics by Al2O3 Layers Inclusion in HfO2-Based RRAM Devices. ECS Solid State Lett. 2, P63–P65 (2013).

Triyoso, D. H. et al. Physical and Electrical Characteristics of HfO2 Gate Dielectrics Deposited by ALD and MOCVD. J. Electrochem. Soc. 152, G203–G209 (2005).

Lanza, M. et al. Grain Boundaries as Preferential Sites for Resistive Switching in the HfO2 Resistive Random Access Memory Structures. Appl. Phys. Lett. 100, 123508 (2012).

Xue, K.-H. et al. Grain Boundary Composition and Conduction in HfO2: An ab Initio Study. Appl. Phys. Lett. 102, 201908 (2013).

Lanza, M. A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope. Materials 7, 2155 (2014).

Iglesias, V. et al. Degradation of Polycrystalline HfO2-based Gate Dielectrics under Nanoscale Electrical Stress. Appl. Phys. Lett. 99, 103510 (2011).

Shi, Y. et al. Elucidating the Origin of Resistive Switching in Ultrathin Hafnium Oxides through High Spatial Resolution Tools. ECS Trans. 64, 19–28 (2014).

Calka, P. et al. Engineering of the Chemical Reactivity of the Ti/HfO2 Interface for RRAM: Experiment and Theory. ACS Appl. Mater. & Interfaces 6, 5056–5060 (2014).

Cho, M. et al. Comparison Between Atomic-Layer-Deposited HfO2 Films Using O3 or H2O Oxidant and Hf[N(CH3)2]4 Precursor. Appl. Phys. Lett. 85, 5953–5955 (2004).

Cho, M. et al. Effects of Carbon Residue in Atomic Layer Deposited HfO2 Films on Their Time-Dependent Dielectric Breakdown Reliability. Appl. Phys. Lett. 90, 182907 (2007).

Miao, B., Mahapatra, R., Wright, N. & Horsfall, A. The role of Carbon Contamination in Voltage Linearity and Leakage Current in High-k Metal-Insulator-Metal Capacitors. J. Appl. Phys. 104, 054510 (2008).

Lin, Y. S. et al. Resistive Switching Mechanisms Relating to Oxygen Vacancies Migration in Both Interfaces in Ti/HfOx/Pt Memory Devices. J. Appl. Phys. 113, 064510 (2013).

Lau, W. S., Leong, L. L., Han, T. & Sandler, N. P. Detection of Oxygen Vacancy Defect States in Capacitors with Ultrathin Ta2O5 films by Zero-Bias Thermally Stimulated Current Spectroscopy. Appl. Phys. Lett. 83, 2835–2837 (2003).

Coffman, J. A., Kibler, G. M., Lyon, T. F. & Acchione, B. D. Carbonization of Plastics and Refractories Materials Research. Vol. Part II (WADD TR 60-646, 1963).

Panish, M. B. & Reif, L. Thermodynamics of the Vaporization of Hf and HfO2: Dissociation Energy of HfO. J. Chem. Phys. 38, 253–256 (1963).

Sowinska, M. et al. In-operando Hard X-ray Photoelectron Spectroscopy Study on the Impact of Current Compliance and Switching Cycles on Oxygen and Carbon Defects in Resistive Switching Ti/HfO2/TiN Cells. J. Appl. Phys. 115, 204509 (2014).

Lukosius, M. et al. Atomic Vapor Deposition of Titanium Nitride as Metal Electrodes for Gate-last CMOS and MIM Devices. Chem. Vap. Deposition 14, 123–128 (2008).

Degraeve, R. et al. Generic Learning of TDDB Applied to RRAM for Improved Understanding of Conduction and Switching Mechanism Through Multiple Filaments. Electron Devices Meeting (IEDM), 2010 IEEE International 632, 28.24.21–28.24.24 (2010).