Khớp dữ liệu tự báo cáo với dữ liệu hoạt động điện da: Điều tra sự thay đổi theo thời gian trong học tập tự điều chỉnh

Springer Science and Business Media LLC - Tập 25 - Trang 1785-1802 - 2019
Muhterem Dindar1, Jonna Malmberg1, Sanna Järvelä1, Eetu Haataja1, Paul A. Kirschner2
1Learning and Educational Technology Research Unit, Faculty of Education, University of Oulu, Oulu, Finland
2Open University of the Netherlands, Heerlen, Netherlands

Tóm tắt

Nghiên cứu này điều tra sự tương tác của các thay đổi theo thời gian trong quy trình học tập tự điều chỉnh (bao gồm hành vi, nhận thức, động lực và cảm xúc) và mối quan hệ của chúng với thành tựu học thuật trong học tập hợp tác hỗ trợ bởi máy tính. Nghiên cứu sử dụng hoạt động điện da và dữ liệu tự báo cáo để nắm bắt tính động của quy trình học tập tự điều chỉnh trong 15 buổi hoạt động học tập hợp tác. Kết quả cho thấy rằng sự thay đổi trong điều chỉnh động lực có liên quan đến thành tựu học thuật. Tuy nhiên, thành tựu học thuật không có liên quan đến điều chỉnh hành vi, điều chỉnh nhận thức hoặc điều chỉnh cảm xúc. Sự đồng bộ sinh lý giữa các sinh viên hợp tác chỉ được tìm thấy có liên quan đến điều chỉnh nhận thức. Kết quả cũng cho thấy rằng sự thống nhất của dữ liệu tự báo cáo giữa các sinh viên hợp tác có liên quan đến sự đồng bộ sinh lý cao hơn giữa họ ở các khía cạnh hành vi, nhận thức và động lực của học tập tự điều chỉnh. Các phát hiện phản ánh sự phức tạp của các mối quan hệ giữa các khái niệm học tập tự điều chỉnh và cho thấy giá trị tiềm năng của các biện pháp sinh lý trong nghiên cứu học tập tự điều chỉnh.

Từ khóa

#Học tập tự điều chỉnh #Học tập hợp tác #Hoạt động điện da #Điều chỉnh hành vi #Điều chỉnh nhận thức #Điều chỉnh động lực

Tài liệu tham khảo

Ahmed, W., van der Werf, G., Kuyper, H., & Minnaert, A. (2013). Emotions, self-regulated learning, and achievement in mathematics: A growth curve analysis. Journal of Educational Psychology, 105(1), 150. https://doi.org/10.1037/a0030160. Ahonen, L., Cowley, B., Torniainen, J., Ukkonen, A., & Vihavainen, A. (2016). Cognitive collaboration found in cardiac physiology: Study in classroom environment. Plos One, 11(7). https://doi.org/10.1371/journal.pone.0159178. Ainley, M., & Patrick, L. (2006). Measuring self-regulated learning processes through tracking patterns of student interaction with achievement activities. Educational Psychology Review, 18(3), 267–286. https://doi.org/10.1007/s10648-006-9018-z. Ainley, M., Hidi, S., & Berndorff, D. (2002). Interest, learning, and the psychological processes that mediate their relationship. Journal of Educational Psychology, 94(3), 545–561. https://doi.org/10.1037/0022-0663.94.3.545. Azevedo, R., Taub, M., Mudrick, N., Farnsworth, J., & Martin, S. A. (2016). Interdisciplinary research methods used to investigate emotions with advanced learning technologies. In M. Zembylas & P. A. Schutz (Eds.), Methodological advances in research on emotion and education (pp. 231–243). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-29049-2_18. Azevedo, R., Taub, M., & Mudrick, N. V. (2018). Understanding and reasoning about real-time cognitive, affective, and metacognitive processes to foster self-regulation with advanced learning technologies. In D. H. Schunk (Ed.), Handbook of self-regulation of learning and performance. Routledge: New York, NY. Barkley, R. A. (2004). Attention-deficit/hyperactivity disorder and self-regulation: Taking an evolutionary perspective on executive functioning. In R. F. Baumeister & K. D. Vohs (Eds.), Handbook of self-regulation: Research, theory, and applications (pp. 301–323). New York: Guilford. Ben-Eliyahu, A., & Linnenbrink-Garcia, L. (2015). Integrating the regulation of affect, behavior, and cognition into self-regulated learning paradigms among secondary and post-secondary students. Metacognition and Learning, 10(1), 15–42. https://doi.org/10.1007/s11409-014-9129-8. Calvo, R. A., & D’Mello, S. (2010). Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Transactions on Affective Computing, 1(1), 18–37. https://doi.org/10.1109/T-AFFC.2010.1. Chi, M. T. (2009). Active-constructive-interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1(1), 73–105. https://doi.org/10.1111/j.1756-8765.2008.01005.x. Davidsen, J., & Vanderlinde, R. (2014). Researchers and teachers learning together and from each other using video-based multimodal analysis. British Journal of Educational Technology, 45(3), 451–460. https://doi.org/10.1111/bjet.12141. Efklides, A. (2011). Interactions of metacognition with motivation and affect in self-regulated learning: The MASRL model. Educational Psychologist, 46(1), 6–25. Efklides, A., & Volet, S. (2005). Emotional experiences during learning: Multiple, situated and dynamic. Learning and Instruction, 15(5), 377–380. https://doi.org/10.1080/00461520.2011.538645. Elkins, A. N., Muth, E. R., Hoover, A. W., Walker, A. D., Carpenter, T. L., & Switzer, F. S. (2009). Physiological compliance and team performance. Applied Ergonomics, 40(6), 997–1003. https://doi.org/10.1016/j.apergo.2009.02.002. Fairclough, S. H., Venables, L., & Tattersall, A. (2005). The influence of task demand and learning on the psychophysiological response. International Journal of Psychophysiology, 56(2), 171–184. https://doi.org/10.1016/j.ijpsycho.2004.11.003. Gendolla, G. H., & Richter, M. (2005). Ego involvement and effort: Cardiovascular, electrodermal, and performance effects. Psychophysiology, 42(5), 595–603. https://doi.org/10.1111/j.1469-8986.2005.00314.x. Gillies, R. M., Carroll, A., Cunnington, R., Rafter, M., Palghat, K., Bednark, J., & Bourgeois, A. (2016). Multimodal representations during an inquiry problem-solving activity in a year 6 science class: A case study investigating cooperation, physiological arousal and belief states. Australian Journal of Education, 60(2), 111–127. https://doi.org/10.1177/0004944116650701. Goetz, T., Pekrun, R., Hall, N., & Haag, L. (2006). Academic emotions from a social-cognitive perspective: Antecedents and domain specificity of students’ affect in the context of Latin instruction. British Journal of Educational Psychology, 76(2), 289–308. https://doi.org/10.1348/000709905X42860. Hadwin, A. F., Järvelä, S., & Miller, M. (2011). Self-regulated, co-regulated, and socially shared regulation of learning. Handbook of Self-Regulation of Learning and Performance, 30, 65–84. Happaney, K., Zelazo, P. D., & Stuss, D. T. (2004). Development of orbitofrontal function: Current themes and future directions. Brain and Cognition, 55(1), 1–10. https://doi.org/10.1016/j.bandc.2004.01.001. Henning, R. A., Boucsein, W., & Claudia Gil, M. (2001). Social–physiological compliance as a determinant of team performance. International Journal of Psychophysiology, 40(3), 221–232. https://doi.org/10.1016/S0167-8760(00)00190-2. Hmelo-Silver, C. E., & Barrows, H. S. (2008). Facilitating collaborative knowledge building. Cognition and Instruction, 26(1), 48–94. https://doi.org/10.1080/07370000701798495. Isohätälä, J., Näykki, P., Järvelä, S., & Baker, M. J. (2017). Striking a balance: Socio-emotional processes during argumentation in collaborative learning interaction. Learning, Culture and Social Interaction. https://doi.org/10.1016/j.lcsi.2017.09.003. Janssen, J., Erkens, G., Kirschner, P. A., & Kanselaar, G. (2012). Task-related and social regulation during online collaborative learning. Metacognition and Learning, 7(1), 25–43. https://doi.org/10.1007/s11409-010-9061-5. Järvelä, S., Järvenoja, H., Malmberg, J., Isohätälä, J., & Sobocinski, M. (2016a). How do types of interaction and phases of self-regulated learning set a stage for collaborative engagement? Learning and Instruction, 43, 39–51. https://doi.org/10.1016/j.learninstruc.2016.01.005. Järvelä, S., Kirschner, P. A., Hadwin, A., Järvenoja, H., Malmberg, J., Miller, M., & Laru, J. (2016b). Socially shared regulation of learning in CSCL: Understanding and prompting individual- and group-level shared regulatory activities. International Journal of Computer-Supported Collaborative Learning, 11(3), 263–280. https://doi.org/10.1007/s11412-016-9238-2. Järvelä, S., Malmberg, J., & Koivuniemi, M. (2016c). Recognizing socially shared regulation by using the temporal sequences of online chat and logs in CSCL. Learning and Instruction, 42, 1–11. https://doi.org/10.1016/j.learninstruc.2015.10.006. Järvenoja, H., Volet, S., & Järvelä, S. (2013). Regulation of emotions in socially challenging learning situations: An instrument to measure the adaptive and social nature of the regulation process. Educational Psychology, 33(1), 31–58. https://doi.org/10.1080/01443410.2012.742334. Järvenoja, H., Järvelä, S., & Malmberg, J. (2017). Supporting groups’ emotion and motivation regulation during collaborative learning. Learning and Instruction. https://doi.org/10.1016/j.learninstruc.2017.11.004. Karvonen, A., Kykyri, V. L., Kaartinen, J., Penttonen, M., & Seikkula, J. (2016). Sympathetic nervous system synchrony in couple therapy. Journal of Marital and Family Therapy, 1–13. https://doi.org/10.1111/jmft.12152. Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: A review of the research. Computers in Human Behavior, 19, 335–353. https://doi.org/10.1016/S0747-5632(02)00057-2. Laru, J., Malmberg, J., Järvenoja, H., Sarenius, V.-M., & Järvelä, S. (2015). Designing simple tools for socially shared regulation: Experiences of using Google Docs and mobile SRL tools in math education. In Proceedings of the 12th International Conference on Computer Supported Collaborative Learning, (pp. 403–410). Gothenburg, Sweden. Malmberg, J., Järvelä, S., Järvenoja, H., & Panadero, E. (2015). Promoting socially shared regulation of learning in CSCL: Progress of socially shared regulation among high- and low-performing groups. Computers in Human Behavior, 52, 562–572. https://doi.org/10.1016/j.chb.2015.03.082. Marci, C. D., & Orr, S. P. (2006). The effect of emotional distance on psychophysiologic concordance and perceived empathy between patient and interviewer. Applied Psychophysiology and Biofeedback, 31(2), 115–128. https://doi.org/10.1007/s10484-006-9008-4. Marci, C. D., Ham, J., Moran, E., & Orr, S. P. (2007). Physiologic correlates of perceived therapist empathy and social-emotional process during psychotherapy. The Journal of nervous and mental disease, 195(2), 103–111 McCardle, L., & Hadwin, A. F. (2015). Using multiple, contextualized data sources to measure learners’ perceptions of their self-regulated learning. Metacognition and Learning, 10(1), 43–75. https://doi.org/10.1007/s11409-014-9132-0. McClelland, M. M., Acock, A. C., & Morrison, F. J. (2006). The impact of kindergarten learning-related skills on academic trajectories at the end of elementary school. Early Childhood Research Quarterly, 21, 471–490. https://doi.org/10.1016/j.ecresq.2006.09.003. McClelland, M. M., Cameron, C. E., Connor, C. M., Farris, C. L., Jewkes, A. M., & Morrison, F. J. (2007). Links between behavioral regulation and preschoolers’ literacy, vocabulary, and math skills. Developmental Psychology, 43(4), 947–959. https://doi.org/10.1037/0012-1649.43.4.947. Mega, C., Ronconi, L., & De Beni, R. (2014). What makes a good student? How emotions, self-regulated learning, and motivation contribute to academic achievement. Journal of Educational Psychology, 106(1), 121. https://doi.org/10.1037/a0033546. Molenaar, I., Chiu, M. M., Sleegers, P., & van Boxtel, C. (2011). Scaffolding of small groups’ metacognitive activities with an avatar. International Journal of Computer-Supported Collaborative Learning, 6(4), 601–624. https://doi.org/10.1007/s11412-011-9130-z. Montague, E., Xu, J., & Chiou, E. (2014). Shared experiences of technology and trust: An experimental study of physiological compliance between active and passive users in technology-mediated collaborative encounters. IEEE Transactions on Human-Machine Systems, 44(5), 614–624. https://doi.org/10.1109/THMS.2014.2325859. Palumbo, R. V., Marraccini, M. E., Weyandt, L. L., Wilder-Smith, O., McGee, H. A., Liu, S., & Goodwin, M. S. (2016). Interpersonal autonomic physiology: A systematic review of the literature. Personality and Social Psychology Review, 1–43. https://doi.org/10.1177/1088868316628405. Panadero, E., & Järvelä, S. (2015). Socially shared regulation of learning: A review. European Psychologist, 20(3), 190–203. https://doi.org/10.1027/1016-9040/a000226. Panadero, E., Klug, J., & Järvelä, S. (2016). Third wave of measurement in the self-regulated learning field: When measurement and intervention come hand in hand. Scandinavian Journal of Educational Research, 60(6), 723–735. https://doi.org/10.1080/00313831.2015.1066436. Pardo, A., Han, F., & Ellis, R. A. (2017). Combining University student self-regulated learning indicators and engagement with online learning events to predict academic performance. IEEE Transactions on Learning Technologies, 10(1), 82–92. https://doi.org/10.1109/TLT.2016.2639508. Perry, N. E., & Winne, P. H. (2006). Learning from learning kits: gStudy traces of students’ self-regulated engagements with computerized content. Educational Psychology Review, 18(3), 211–228. Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in college students. Educational Psychology Review, 16(4), 385–407. https://doi.org/10.1007/s10648-004-0006-x. Ravaja, N. (2004). Contributions of psychophysiology to media research: Review and recall paradigm. International Journal of Human-Computer Studies, 67(8), 607–627. Reimann, P., Markauskaite, L., & Bannert, M. (2014). E-research and learning theory: What do sequence and process mining methods contribute? British Journal of Educational Technology, 45(3), 528–540. https://doi.org/10.1111/bjet.12146. Schellings, G., & Van Hout-Wolters, B. (2011). Measuring strategy use with self-report instruments: Theoretical and empirical considerations. Metacognition and Learning, 6(2), 83–90. https://doi.org/10.1007/s11409-011-9081-9. Schunk, D., & Greene, J. A. (2017). Handbook of self-regulation of learning and performance. New York: Routledge. Schunk, D. H., & Zimmerman, B. J. (2008). Motivation: An essential dimension of self-regulated learning. In D. H. Schunk & B. J. Zimmerman (Eds.), Motivation and self-regulated learning: Theory, research, and applications (pp. 245–266). New York: Erlbaum. Schwinger, M., Steinmayr, R., & Spinath, B. (2009). How do motivational regulation strategies affect achievement: Mediated by effort management and moderated by intelligence. Learning and Individual Differences, 19(4), 621–627. https://doi.org/10.1016/j.lindif.2009.08.006. Sektnan, M., McClelland, M. M., Acock, A., & Morrison, F. J. (2010). Relations between early family risk, children’s behavioral regulation, and academic achievement. Early Childhood Research Quarterly, 25(4), 464–479. https://doi.org/10.1016/j.ecresq.2010.02.005. Volet, S., Vauras, M., & Salonen, P. (2009). Self- and social regulation in learning contexts: An integrative perspective. Educational Psychologist, 44(4), 215–226. https://doi.org/10.1080/00461520903213584. Walker, A. D., Muth, E. R., Switzer, F. S., & Rosopa, P. J. (2012). Predicting team performance in a dynamic environment: A team psychophysiological approach to measuring cognitive readiness. Journal of Cognitive Engineering and Decision Making, 7(1), 69–82. https://doi.org/10.1177/1555343412444733. Webster, E. A., & Hadwin, A. F. (2015). Emotions and emotion regulation in undergraduate studying: Examining students’ reports from a self-regulated learning perspective. Educational Psychology, 35(7), 794–818. https://doi.org/10.1080/01443410.2014.895292. Winne, P. H. (2017). Leveraging big data to help each learner and accelerate learning science. Teachers College Record, 119(3), 1–24. Winne, P., & Perry, N. (2000). Measuring self-regulated learning. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 531–566). San Diego: Academic. Wolters, C. A. (2003). Regulation of motivation: Evaluating an underemphasized aspect of self-regulated learning. Educational Psychologist, 38(4), 189–205. https://doi.org/10.1207/S15326985EP3804_1. Zhao, K., & Chan, C. K. (2014). Fostering collective and individual learning through knowledge building. International Journal of Computer-Supported Collaborative Learning, 9(1), 63–95. https://doi.org/10.1007/s11412-013-9188-x. Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American Educational Research Journal, 45(1), 166–183. https://doi.org/10.3102/0002831207312909.