Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities

BMC Biology - Tập 7 - Trang 1-20 - 2009
Thorsten Stoeck1, Anke Behnke1, Richard Christen2, Linda Amaral-Zettler3, Maria J Rodriguez-Mora4, Andrei Chistoserdov4, William Orsi5, Virginia P Edgcomb6
1Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
2Université de Nice et CNRS UMR 6543, Laboratoire de Biologie Virtuelle, Centre de Biochimie, Nice, France
3Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, USA
4University of Louisiana at Lafayette, Lafayette, USA
5Northeastern University, Boston, USA
6Woods Hole Oceanographic Institution; Woods Hole USA

Tóm tắt

Recent advances in sequencing strategies make possible unprecedented depth and scale of sampling for molecular detection of microbial diversity. Two major paradigm-shifting discoveries include the detection of bacterial diversity that is one to two orders of magnitude greater than previous estimates, and the discovery of an exciting 'rare biosphere' of molecular signatures ('species') of poorly understood ecological significance. We applied a high-throughput parallel tag sequencing (454 sequencing) protocol adopted for eukaryotes to investigate protistan community complexity in two contrasting anoxic marine ecosystems (Framvaren Fjord, Norway; Cariaco deep-sea basin, Venezuela). Both sampling sites have previously been scrutinized for protistan diversity by traditional clone library construction and Sanger sequencing. By comparing these clone library data with 454 amplicon library data, we assess the efficiency of high-throughput tag sequencing strategies. We here present a novel, highly conservative bioinformatic analysis pipeline for the processing of large tag sequence data sets. The analyses of ca. 250,000 sequence reads revealed that the number of detected Operational Taxonomic Units (OTUs) far exceeded previous richness estimates from the same sites based on clone libraries and Sanger sequencing. More than 90% of this diversity was represented by OTUs with less than 10 sequence tags. We detected a substantial number of taxonomic groups like Apusozoa, Chrysomerophytes, Centroheliozoa, Eustigmatophytes, hyphochytriomycetes, Ichthyosporea, Oikomonads, Phaeothamniophytes, and rhodophytes which remained undetected by previous clone library-based diversity surveys of the sampling sites. The most important innovations in our newly developed bioinformatics pipeline employ (i) BLASTN with query parameters adjusted for highly variable domains and a complete database of public ribosomal RNA (rRNA) gene sequences for taxonomic assignments of tags; (ii) a clustering of tags at k differences (Levenshtein distance) with a newly developed algorithm enabling very fast OTU clustering for large tag sequence data sets; and (iii) a novel parsing procedure to combine the data from individual analyses. Our data highlight the magnitude of the under-sampled 'protistan gap' in the eukaryotic tree of life. This study illustrates that our current understanding of the ecological complexity of protist communities, and of the global species richness and genome diversity of protists, is severely limited. Even though 454 pyrosequencing is not a panacea, it allows for more comprehensive insights into the diversity of protistan communities, and combined with appropriate statistical tools, enables improved ecological interpretations of the data and projections of global diversity.

Tài liệu tham khảo

Epstein S, López-García P: "Missing" protists: a molecular prospective. Biodivers Conserv. 2008, 17 (2): 261-276. Moon-van der Staay SY, De Wachter R, Vaulot D: Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature. 2001, 409 (6820): 607-610. Palacios C, Zettler E, Amils R, Amaral-Zetter L: Contrasting microbial community assembly hypotheses: A reconciling tale from the Rio Tinto. PLos ONE. 2008, 3 (e3853): Baker BJ, Tyson GW, Goosherst L, Banfield JF: Insights into the Diversity of Eukaryotes in Acid Mine Drainage Biofilm Communities. Applied and Environmental Microbiology. 2009, 75 (7): 2192-2199. López-García P, Rodriguez-Valera F, Pedrós-Alió C, Moreira D: Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature. 2001, 409 (6820): 603-607. Moreira D, López-García P: The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol. 2002, 10 (1): 31-38. Edgcomb VP, Kysela DT, Teske A, de Vera Gomez A, Sogin ML: Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA. 2002, 99 (11): 7658-7662. Countway PD, Gast RJ, Savai P, Caron DA: Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. J Eukaryot Microbiol. 2005, 52 (2): 95-106. Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T: Microbial eukaryotes in the hypersaline anoxic L'Atalante deep-sea basin. Environmental Microbiology. 2008, 11: 360-381. Behnke A, Bunge J, Barger K, Breiner HW, Alla V, Stoeck T: Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic Fjord (Framvaren, Norway). Appl Environ Microbiol. 2006, 72 (5): 3626-3636. Richards TA, Vepritskiy AA, Guliamova DE, Nierzwicki-Bauer SA: The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environmental Microbiology. 2005, 7 (9): 1413-1425. Groisillier A, Massana R, Valentin K, Vaulot D, Guillou L: Genetic diversity and habitats of two enigmatic marine alveolate lineages. Aquat Microb Ecol. 2006, 42: 277-291. Christen R: Global sequencing: A review of current molecular data and new methods available to assess microbial diversity. Microbes and Environments. 2008, 23 (4): 253-268. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ: Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci USA. 2006, 103 (32): 12115-12120. Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML: Microbial population structures in the deep marine biosphere. Science. 2007, 318 (5847): 97-100. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, et al: Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006, 4 (2): 102-112. Fenchel T: Microbial behavior in a heterogeneous world. Science. 2002, 296 (5570): 1068-1071. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW: Pyrosequencing enumerates and contrasts soil microbial diversity. ISME Journal. 2007, 1 (4): 283-290. Dethlefsen L, Huse S, Sogin ML, Relman DA: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. Plos Biology. 2008, 6 (11): 2383-2400. McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, Liu ZZ, Lozupone CA, Hamady M, Knight R, Bushman FD: The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. Plos Pathogens. 2008, 4 (2): Richards F: The Cariaco Basin (Trench). Oceanogr Mar Bio Ann Rev. 1975, 13: 11-67. Muller-Karger F, Varela R, Thunell R, Scranton M, Bohrer R, G T, Capelo J, Astor Y, Tappa E, Ho T-Y, et al: Annual cycle of primary production in the Cariaco Basin: Response to upwelling and implications for vertical transport. J Geophys Res. 2001, 106: 4527-4542. Taylor GT, Scranton MI, Iabichella I, Ho T-Y, Thunell RC, Muller-Karger F, Varela R: Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr. 2001, 46: 148-163. Astor Y, Muller-Karger F, Scranton MI: Seasonal and interannual variation in the hydrography of the Cariaco Basin: implications for basin ventilation. Continental Shelf Research. 2003, 23 (1): 125-144. Richards F, Vaccaro R: The Cariaco Trench, an anaerobic basin in the Caribbean Sea. Deep-Sea Res. 1956, 3: 214-228. Stoeck T, Taylor GT, Epstein SS: Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl Environ Microbiol. 2003, 69 (9): 5656-5663. Taylor GT, Hein C, Iabichella M: Temporal variations in viral distributions in the anoxic Cariaco Basin. Aquat Microb Ecol. 2003, 30 (2): 103-116. Skei JM: Framvaren - Environmental Setting. Mar Chem. 1988, 23 (3-4): 209-218. Stoeck T, Fowle WH, Epstein SS: Methodology of protistan discovery: from rRNA detection to quality scanning electron microscope images. Appl Environ Microbiol. 2003, 69 (11): 6856-6863. Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS: A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist. 2006, 157 (1): 31-43. Cronn R, Cedroni M, Haselkorn T, Grover C, Wendel JF: PCR-mediated recombination in amplification products derived from polyploid cotton. Theoretical and Applied Genetics. 2002, 104 (2-3): 482-489. Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, Scanlan DJ, Worden AZ: Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environmental Microbiology. 2008, 10 (12): 3349-3365. Boltovskoy D, Kogan M, Alder VA, Mianzan H: First record of a brackish radiolarian (Polycystina): Lophophaena rioplatensis n. sp in the Rio de la Plata estuary. Journal of Plankton Research. 2003, 25 (12): 1551-1559. Dessen P, Zagulski M, Gromadka R, Plattner H, Kissmehl R, Meyer E, Betermier M, Schultz JE, Linder JU, Pearlman RE, et al: Paramecium genome survey: a pilot project. Trends in Genetics. 2001, 17 (6): 306-308. Rooney AP: Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in apicomplexans. Molecular Biology and Evolution. 2004, 21 (9): 1704-1711. de Lange GJ, Middelburg JJ, Weijden van der CH, Catalano G, Luther I, G W, Hydes DJ, Woittiez JRW, Klinkhammer GP: Composition of anoxic hypersaline brines in the Tyro and Bannock Basins, eastern Mediterranean. Mar Chem. 1990, 31: 63-88. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM: Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 2007, 8 (7): R143- Stoeck T, Kasper J, Bunge J, Leslin C, Ilyin V, Epstein S: Protistan diversity in the arctic: a case of paleoclimate shaping modern biodiversity?. PLoS ONE. 2007, 2 (1): e728- Jeon SO, Bunge J, Stoeck T, Barger K, Hong S-H, Epstein S: Synthetic statistical approach reveals a high degree of richness of microbial eukaryotes in an anoxic water column. Appl Environ Microbiol. 2006, 72 (10): 6578-6583. Auinger BM, Pfandl K, Boenigk J: Improved methodology for identification of protists and microalgae from plankton samples preserved in Lugol's iodine solution: Combining microscopic analysis with single-cell PCR. Appl Environ Microbiol. 2008, 74 (8): 2505-2510. Zhu F, Massana R, Not F, Marie D, Vaulot D: Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol. 2005, 52 (1): 79-92. Stoeck T, Epstein S: Protists and the rare biosphere. Crystal Ball. Environ Microbiol Reports. 2009, 1: 3-26. Pedrós-Alió C: Ecology. Dipping into the rare biosphere. Science. 2007, 315 (5809): 192-193. Dawson SC, Pace NR: Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA. 2002, 99 (12): 8324-8329. Kolodziej K, Stoeck T: Cellular identity of a novel uncultured MAST-12 lineage and phylogeny of the uncultured marine stramenopile sequence clade MAST-12. Appl Environ Microbiol. 2007, 73: 2718-2726. Countway PD, Gast RJ, Dennett MR, Savai P, Rose JM, Caron DA: Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ Microbiol. 2007, 9 (5): 1219-1232. López-García P, Philippe H, Gail F, Moreira D: Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci USA. 2003, 100 (2): 697-702. Takishita K, Miyake H, Kawato M, Maruyama T: Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles. 2005, 9: 185-196. Ramette A, Tiedje JM: Biogeography: An Emerging Cornerstone for Understanding Prokaryotic Diversity, Ecology, and Evolution. Microb Ecol. 2007, 53: 197-207. Green J, Bohannan BJ: Spatial scaling of microbial biodiversity. Trends Ecol Evol. 2006, 21 (9): 501-507. Theissen U, Martin W, (eds): Biochemical and evolutionary aspects of eukaryotes that inhabit sulfidic environments. 2007, Berlin: Springer Fenchel T, Finlay BJ: Ecology and evolution in anoxic worlds. 1995, Oxford: Oxford University Press Atkins MS, Hanna MA, Kupetsky EA, Saito MA, Taylor CD, Wirsen CO: Tolerance of flagellated protists to high sulfide and metal concentrations potentially encountered at deep-sea hydrothermal vents. Mar Eco Prog Ser. 2002, 226: 63-75. Rosati G: Ectosymbiosis in ciliated protozoa. Cellular Origin, Life in Extreme Habitats and Astrobiology. Edited by: Seckbach J. 2004, Netherlands: Springer, 2: 475-488. Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, Weil E, Andersen GL, Medina M: Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME Journal. 2009, 3 (5): 512-521. Lin XJ, Scranton MI, Chistoserdov AY, Varela R, Taylor GT: Spatiotemporal dynamics of bacterial populations in the anoxic Cariaco Basin. Limnol Oceanogr. 2008, 53 (1): 37-51. Fox JW: The dynamics of top-down and bottom-up effects in food webs of varying prey diversity, composition, and productivity. Oikos. 2007, 116 (2): 189-200. Fu YT, O'Kelly C, Sieracki M, Distel DL: Protistan grazing analysis by flow cytometry using prey labeled by in vivo expression of fluorescent proteins. Applied and Environmental Microbiology. 2003, 69 (11): 6848-6855. Pernthaler J: Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology. 2005, 3 (7): 537-546. Katajisto T: Effects of anoxia and hypoxia on the dormancy and survival of subitaneous eggs of Acartia bifilosa (Copepoda: Calanoida). Marine Biology. 2004, 145: 751-757. Stickle WB, Kapper MA, Liu L-L, Gnaiger E, Wang S: Metabolic adaptations of several species of crustaceans and molluscs to hypoxia: tolerance and microcalorimetric studies. Biol Bull. 1989, 177: 303-312. Purcell JE, Breitburg DL, Decker DL, Graham WM, J YM: Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. Coastal hypoxia: consequences for living resources and ecosystems. Edited by: Rabalais NN, Turner RE. 2001, Washington, D. C.: American Geophysical Union, 77-100. Ruby EG, Fox DL: Anaerobic respiration in the polychaete Euzonus (Thoracophelia) mucronata. Mar Biol. 1976, 35: 1432-1793. Sagasti A, Schaffner LC, Duffy JE: Effects of periodic hypoxia on mortality, feeding and predation in an estuarine epifaunal community. Journal of Experimental Marine Biology and Ecology. 2001, 258 (2): 257-283. Amaral-Zetter L, McCliment E, Ducklow H, Huse S: A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PloS ONE. 2009, 4 (7): e6372-doi:10.1371/journal.pone.0006372 Yu ZT, Morrison M: Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2004, 70 (8): 4800-4806. Rodriguez-Martinez R, Labrenz M, del Campo J, Forn I, Jurgens K, Massana R: Distribution of the uncultured protist MAST-4 in the Indian Ocean, Drake Passage and Mediterranean Sea assessed by real-time quantitative PCR. Environ Microbiol. 2009, 11 (2): 397-408. Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000, 7 (1-2): 203-214. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, et al: The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Euk Microbiol. 2005, 52 (5): 399-451. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R, et al: A higher-level phylogenetic classification of the Fungi. Mycol Res. 2007, 111: 509-547. Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research. 2005, 33 (2): 511-518. Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004, 5: 1-19. Cilia V, Lafay B, Christen R: Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol. 1996, 13 (3): 451-461. Levenshtein V: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady. 1966, 13: 451-461. Prokopowich CD, Gregory TR, Crease TJ: The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003, 46 (1): 48-50. Chao A, Shen TJ: Program SPADE (Species Prediction And Diversity Estimates). 2003, [http://chao.stat.nthu.edu.tw] Sokal R, Michener C: A statistical method for evaluating systematic relationships. Univ Kansas Scient Bulletin. 1958, 38: 1409-1438.