Mass Spectrometry Analysis of 2-Nitrophenylhydrazine Carboxy Derivatized Peptides

American Chemical Society (ACS) - Tập 22 - Trang 1958-1967 - 2011
Junmei Zhang1, Rowaida Al-Eryani1, Haydn L. Ball1
1Protein Chemistry Technology Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA

Tóm tắt

Peptides with two or more basic residues, including those with post-translational modifications (PTMs), such as methylation and phosphorylation, can be highly hydrophilic and, therefore, are often difficult to be retained on a reversed-phase (RP) column. In addition, these highly hydrophilic peptides may carry two or more positive charges, which often fragment poorly upon collisionally activated dissociation (CAD), resulting in few sequence-specific ions. C-terminal rearrangement may also occur during CAD. Furthermore, some PTMs are labile and tend to be lost when subjected to CAD as is the case with phosphorylation on serine or threonine. To overcome the difficulties of separation, detection, and fragmentation of highly hydrophilic peptides, we report here the effect of carboxy group derivatization with 2-nitrophenylhydrazine (this strategy will be called NPHylation for simplicity). NPHylation significantly increases the hydrophobicity of the peptides, eliminates C-terminal rearrangement in all cases, and offers enhanced sensitivity in some cases. In addition, the CAD spectra of the resulting NPHylated peptides carry more sequence-specific ions due to significant reduction of sequence scrambling as observed for peptide EHAGVISVL. Furthermore, the different carboxy derivatives of this peptide undergo sequence scrambling to varying degrees, which clearly demonstrates that the C-terminus has a profound effect on peptide fragmentation. Finally, sequence scrambling is a charge dependent phenomenon, which affects CAD of doubly charged peptides far more than their singly charged counterparts.

Tài liệu tham khảo

Burlet, O., Yang, C.Y., Gaskell, S.J.: Influence of cysteine to cysteic acid oxidation on the collision-activated decomposition of protonated peptides: Evidence for intraionic interactions. J. Am. Soc. Mass Spectrom. 3, 337–344 (1992) Dongre, A.R., Jones, J.L., Somogyi, A., Wysocki, V.H.: Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: Evidence for the mobile proton model. J. Am. Chem. Soc. 118, 8365–8374 (1996) Haigis, M.C., Guarente, L.P.: Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Gene Dev. 20, 2913–2921 (2006) Hake, S.B., Xiao, A., Allis, C.D.: Linking the epigenetic 'language' of covalent histone modifications to cancer. Br. J. Cancer 90, 761–769 (2004) Kouzarides, T.: Acetylation: A regulatory modification to rival phosphorylation? EMBO J. 19, 1176–1179 (2000) McKinsey, T.A., Olson, E.N.: Cardiac histone acetylation—therapeutic opportunities abound. Trends Genet. 20, 206–213 (2004) Yang, X.J.: The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32, 959–976 (2004) Bedford, M.T., Richard, S.: Arginine methylation: An emerging regulator of protein function. Mol. Cell. 18(3), 263–272 (2005) Lake, A.N., Bedford, M.T.: Protein methylation and DNA repair. Mutat. Res. Fund. Mol. M. 618, 91–101 (2007) Pahlich, S., Zakaryan, R.P., Gehring, H.: Protein arginine methylation: Cellular functions and methods of analysis. Biochem. Biophys. Acta-Proteins Proteom. 1764, 1890–1903 (2006) Paik, W.K., Paik, D.C., Kim, S.: Historical review: The field of protein methylation. Trends Biochem. Sci. 32, 146–152 (2007) Johnson, S.A., Hunter, T.: Kinomics: Methods for deciphering the kinome. Nat. Methods 2, 17–25 (2005) Xu, Y., Zhang, L., Lu, H., Yang, P.: Mass spectrometry analysis of phosphopeptides after peptide carboxy group derivatization. Anal. Chem. 80, 8324–8328 (2008) Snijders, A.P.L., Hung, M.L., Wilson, S.A., Dickman, M.J.: Analysis of arginine and lysine methylation utilizing peptide separations at neutral pH and electron transfer dissociation mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 88–96 (2010) Qiao, X., Sun, L., Chen, L., Zhou, Y., Yang, K., Liang, Z., Zhang, L., Zhang, Y.: Piperazines for peptide carboxyl group derivatization: Effect of derivatization reagents and properties of peptides on signal enhancement in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 25, 639–646 (2011) Ball, H.L., Mascagni, P.: Chemical synthesis and purification of proteins: A methodology. Int. J. Pept. Protein Res. 48, 31–47 (1996) Coenen, A., Kerkhoff, M.J.G., Heringa, R.M., Vanderwal, S.: Comparison of several methods for the determination of trace amounts of polar aliphatic monocarboxylic acids by high-performance liquid-chromatography. J. Chromatogr. 593, 243–252 (1992) Kondoh, Y., Yamada, A., Takano, S.: Determination of nonionic surfactants with ester groups by high-performance liquid-chromatography with postcolumn derivatization. J. Chromatogr. 541, 431–441 (1991) Miwa, H., Yamamoto, M.: Liquid-chromatographic determination of free and total fatty-acids in milk and milk-products as their 2-nitrophenylhydrazides. J. Chromatogr. 523, 235–246 (1990) Miwa, H., Yamamoto, M., Asano, T.: High-performance liquid-chromatographic analysis of fatty-acid compositions of platelet phospholipids as their 2-nitrophenylhydrazides. J. Chromatogr. B 568, 25–34 (1991) Winter, D., Lehmann, W.D.: Sequencing of the 13 structurally isomeric quartets of N-terminal dipeptide motifs in peptides by collision-induced dissociation. Proteomics 9, 2076–2084 (2009) Winter, D., Lehmann, W.D.: Individual b2 ion fragmentation profiles combined with AspN digestion improve N-terminal peptide sequencing. Anal. Bioanal. Chem. 393, 1587–1591 (2009) Godugu, B., Neta, P., Simon-Manso, Y., Stein, S.E.: Effect of N-terminal glutamic acid and glutamine on fragmentation of peptide iIons. J. Am. Soc. Mass Spectrom. 21, 1169–1176 (2010) Hiserodt, R.D., Brown, S.M., Swijter, D.F.H., Hawkins, N., Mussinan, C.J.: A study of b(1) + H2O and b(1)-ions in the product ion spectra of dipeptides containing N-terminal basic amino acid residues. J. Am. Soc. Mass Spectrom. 18, 1414–1422 (2007) Sharp, J.S., Tomer, K.B.: Formation of [b(n-1) + OH + H]+ ion structural analogs by solution-phase chemistry. J. Am. Soc. Mass Spectrom. 16, 607–621 (2005) Thorne, G.C., Ballard, K.D., Gaskell, S.J.: Metastable decomposition of peptide [M + H]+ ions via rearrangement involving loss of the C-terminal amino-acid residue. J. Am. Soc. Mass Spectrom. 1, 249–257 (1990) Thorne, G.C., Gaskell, S.J.: Elucidation of some fragmentations of small peptides using sequential mass spectrometry on a hybrid instrument. Rapid Commun Mass Spectrom. 3, 217–21 (1989) Tsaprailis, G., Nair, H., Somogyi, A., Wysocki, V.H., Zhong, W.Q., Futrell, J.H., Summerfield, S.G., Gaskell, S.J.: Influence of secondary structure on the fragmentation of protonated peptides. J. Am. Chem. Soc. 121, 5142–5154 (1999) Zhang, J., Chen, Y., Zhang, Z., Xing, G., Wysocka, J., Zhao, Y.: MS/MS/MS reveals false positive identification of histone serine methylation. J. Proteome Res. 9, 585–594 (2010) Deery, M.J., Summerfield, S.G., Buzy, A., Jennings, K.R.: A Mechanism for the loss of 60 u from peptides containing an arginine residue at the C-terminus. J. Am. Soc. Mass Spectrom. 8, 253–261 (1997) Dikler, S., Kelly, J.W., Russell, D.H.: Improving mass spectrometric sequencing of arginine-containing peptides by derivatization with acetylacetone. J. Mass Spectrom. 32, 1337–1349 (1997) Gonzalez, J., Besada, V., Garay, H., Reyes, O., Padron, G., Tambara, Y., Takao, T., Shimonishi, Y.: Effect of the position of a basic amino acid on C-terminal rearrangement of protonated peptides upon collision-induced dissociation. J. Mass Spectrom. 31, 150–158 (1996) Vachet, R.W., Asam, M.R., Glish, G.L.: Secondary interactions affecting the dissociation patterns of arginine-containing peptide ions. J. Am. Chem. Soc. 118, 6252–6256 (1996) Ballard, K.D., Gaskell, S.J.: Intramolecular [O-18] isotopic exchange in the gas-phase observed during the tandem mass-spectrometric analysis of peptides. J. Am. Chem. Soc. 114, 64–71 (1992) Bythell, B.J., Csonka, I.P., Suhai, S., Barofsky, D.F., Paizs, B.: Gas-phase structure and fragmentation pathways of singly protonated peptides with N-terminal arginine. J. Phys. Chem. B 114, 15092–15105 (2010) Farrugia, J.M., O'Hair, R.A.J.: Involvement of salt bridges in a novel gas phase rearrangement of protonated arginine-containing dipeptides which precedes fragmentation. Int. J. Mass Spectrom. 222, 229–242 (2003) Harrison, A.G.: Peptide sequence scrambling through cyclization of b(5) ions. J. Am. Soc. Mass Spectrom. 19, 1776–1780 (2008) Harrison, A.G.: To b or not to b: The ongoing saga of peptide b ions. Mass Spectrom. Rev. 28, 640–654 (2009) Harrison, A.G., Young, A.B., Bleiholder, C., Suhai, S., Paizs, B.: Scrambling of sequence information in collision-induced dissociation of peptides. J. Am. Chem. Soc. 128, 10364–10365 (2006) Vachet, R.W., Bishop, B.M., Erickson, B.W., Glish, G.L.: Novel peptide dissociation: Gas-phase intramolecular rearrangement of internal amino acid residues. J. Am. Chem. Soc. 119, 5481–5488 (1997) Yague, J., Paradela, A., Ramos, M., Ogueta, S., Marina, A., Barahona, F., de Castro, J.A.L., Vazquez, J.: Peptide rearrangement during quadrupole ion trap fragmentation: Added complexity to MS/MS spectra. Anal. Chem. 75, 1524–1535 (2003) Bleiholder, C., Osburn, S., Williams, T.D., Suhai, S., Van Stipdonk, M., Harrison, A.G., Paizs, B.: Sequence-scrambling fragmentation pathways of protonated peptides. J. Am. Chem. Soc. 130, 17774–17789 (2008) Chen, X., Yu, L., Steill, J.D., Oomens, J., Polfer, N.C.: Effect of peptide fragment size on the propensity of cyclization in collision-induced dissociation: Oligoglycine b2–b8. J. Am. Chem. Soc. 131, 18272–18282 (2009) Cordero, M.M., Houser, J.J., Wesdemiotis, C.: The neutral products formed during backbone fragmentations of protonated peptides in tandem mass-spectrometry. Anal. Chem. 65, 1594–1601 (1993) Molesworth, S., Osburn, S., Van Stipdonk, M.J.: Influence of size on apparent scrambling of sequence during CID of b-type ions. J. Am. Soc. Mass Spectrom. 20, 2174–2181 (2009) Molesworth, S., Osburn, S., Van Stipdonk, M.J.: Influence of amino acid side chains on apparent selective opening of cyclic b5 ions. J. Am. Soc. Mass Spectrom. 21, 1028–1036 (2010) Molesworth, S.P., Van Stipdonk, M.J.: Apparent inhibition by arginine of macrocyclic b ion formation from singly charged protonated peptides. J. Am. Soc. Mass Spectrom. 21, 1322–1328 (2010) Tang, X.J., Boyd, R.K.: Rearrangements of doubly-charged acylium ions from lysyl and ornithyl peptides. Rapid Commun. Mass Spectrom. 8, 678–686 (1994) Nold, M.J., Cerda, B.A., Wesdemiotis, C.: Proton affinities of the N- and C-terminal segments arising upon the dissociation of the amide bond in protonated peptides. J. Am. Soc. Mass Spectrom. 10, 1–8 (1999) Nold, M.J., Wesdemiotis, C., Yalcin, T., Harrison, A.G.: Amide bond dissociation in protonated peptides. Structures of the N-terminal ionic and neutral fragments. Int. J. Mass Spectrom. 164, 137–153 (1997) Paizs, B., Suhai, S.: Towards understanding the tandem mass spectra of protonated oligopeptides. 1. Mechanism of amide bond cleavage. J. Am. Soc. Mass Spectrom. 15, 103–113 (2004) Yalcin, T., Khouw, C., Csizmadia, I.G., Peterson, M.R., Harrison, A.G.: Why are b ions stable species in peptide spectra? J. Am. Soc. Mass Spectrom. 6, 1165–1174 (1995) Bythell, B.J., Knapp-Mohammady, M., Paizs, B., Harrison, A.G.: Effect of the His residue on the cyclization of b ions. J. Am. Soc. Mass Spectrom. 21, 1352–1363 (2010) Bythell, B.J., Suhai, S., Somogyi, A., Paizs, B.: Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. J. Am. Chem. Soc. 131, 14057–14065 (2009) Jia, C.X., Qi, W., He, Z.M.: Cyclization reaction of peptide fragment ions during multistage collisionally activated decomposition: An inducement to lose internal amino-acid residues. J. Am. Soc. Mass Spectrom. 18, 663–678 (2007) Mouls, L., Aubagnac, J.L., Martinez, J., Enjalbal, C.: Low energy peptide fragmentations in an ESI-Q-TOF type mass spectrometer. J. Proteome Res. 6, 1378–1391 (2007) Saminathan, I.S., Wang, X.S., Guo, Y., Krakovska, O., Voisin, S., Hopkinson, A.C.: Siu. K. W. M. The extent and effects of peptide sequence scrambling via formation of macrocyclic b ions in model proteins. J. Am. Soc. Mass Spectrom. 21, 2085–2094 (2010) Bythell, B.J., Maitre, P., Paizs, B.: Cyclization and rearrangement reactions of an fragment ions of protonated peptides. J. Am. Chem. Soc. 132, 14766–14779 (2010) Yu, L., Tan, Y., Tsai, Y., Goodlett, D.R., Polfer, N.C.: On the relevance of peptide sequence permutations in shotgun proteomics studies. J. Proteome Res. 10, 2409–2416 (2011) Goloborodko, A.A., Gorshkov, M.V., Good, D.M., Zubarev, R.A.: Sequence scrambling in shotgun proteomics is negligible. J. Am. Soc. Mass Spectrom. 22, 1121–1124 (2011)