Markers associated with heading and aftermath heading in perennial ryegrass full-sib families

Springer Science and Business Media LLC - Tập 16 - Trang 1-16 - 2016
Sai Krishna Arojju1,2, Susanne Barth1, Dan Milbourne1, Patrick Conaghan3, Janaki Velmurugan1, Trevor R. Hodkinson2, Stephen L. Byrne1
1Teagasc, Crop Science Department, Oak Park, Ireland
2Department of Botany, Trinity College Dublin, Dublin 2, Ireland
3Teagasc, Grassland Science Research Department, Animal and Grassland Research and Innovation Centre, Oak Park, Ireland

Tóm tắt

Heading and aftermath heading are important traits in perennial ryegrass because they impact forage quality. So far, genome-wide association analyses in this major forage species have only identified a small number of genetic variants associated with heading date that overall explained little of the variation. Some possible reasons include rare alleles with large phenotypic affects, allelic heterogeneity, or insufficient marker density. We established a genome-wide association panel with multiple genotypes from multiple full-sib families. This ensured alleles were present at the frequency needed to have sufficient statistical power to identify associations. We genotyped the panel via partial genome sequencing and performed genome-wide association analyses with multi-year phenotype data collected for heading date, and aftermath heading. Genome wide association using a mixed linear model failed to identify any variants significantly associated with heading date or aftermath heading. Our failure to identify associations for these traits is likely due to the extremely low linkage disequilibrium we observed in this population. However, using single marker analysis within each full-sib family we could identify markers and genomic regions associated with heading and aftermath heading. Using the ryegrass genome we identified putative orthologs of key heading genes, some of which were located in regions of marker-trait associations. Given the very low levels of LD, genome wide association studies in perennial ryegrass populations are going to require very high SNP densities. Single marker analysis within full-sibs enabled us to identify significant marker-trait associations. One of these markers anchored proximal to a putative ortholog of TFL1, homologues of which have been shown to play a key role in continuous heading of some members of the rose family, Rosaceae.

Tài liệu tham khảo

McGrath S, Hodkinson TR, Barth S. Extremely high cytoplasmic diversity in natural and breeding populations of Lolium (Poaceae). Heredity. 2007; 99(5):531–44. Wilken D. Lolium. The Jepson Manual. Higher Plants of California, University of California Press, Berkeley.1993; p. 1400. Gagic M, Faville M, Kardailsky I, Putterill J. Comparative genomics and functional characterisation of the gigantea gene from the temperate forage perennial ryegrass Lolium perenne. Plant Mol Biol Rep. 2015; 33(4):1098–106. Fischer G, Prieler S, van Velthuizen H, Berndes G, Faaij A, Londo M, de Wit M. Biofuel production potentials in europe: Sustainable use of cultivated land and pastures, part ii: Land use scenarios. Biomass Bioenergy. 2010; 34(2):173–87. O’Donoghue C, Creamer R, Crosson P, Curran T, Donnellan T, Farrelly N, Fealy R, French P, Geoghegan C, Green S, et al. Drivers of agricultural land use change in Ireland to 2025. Teagasc; 2015. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.704.6065&rep=rep1&type=pdf. McGrath S, Hodkinson TR, Charles T, Zen D, Barth S. Variation in inflorescence characters and inflorescence development in ecotypes and cultivars of Lolium perenne L. Grass Forage Sci. 2010; 65(4):398–409. Smit H, Tas B, Taweel H, Tamminga S, Elgersma A. Effects of perennial ryegrass Lolium perenne L. cultivars on herbage production, nutritional quality and herbage intake of grazing dairy cows. Grass Forage Sci. 2005; 60(3):297–309. Humphreys MW, Yadav R, Cairns AJ, Turner L, Humphreys J, Skøt L. A changing climate for grassland research. New Phytologist. 2006; 169(1):9–26. Yamada T, Jones E, Cogan N, Vecchies A, Nomura T, Hisano H, Shimamoto Y, Smith K, Hayward M, Forster J. Qtl analysis of morphological, developmental, and winter hardiness-associated traits in perennial ryegrass. Crop Sci. 2004; 44(3):925–35. Valk P, Proveniers M, Pertijs J, Lamers J, Dun C, Smeekens J. Late heading of perennial ryegrass caused by introducing an Arabidopsis homeobox gene. Plant Breed. 2004; 123(6):531–5. Wilkins P. Breeding perennial ryegrass for agriculture. Euphytica. 1991; 52(3):201–14. Devos KM, Gale MD. Comparative genetics in the grasses. Plant Mol Biol. 1997; 35(1–2):3–15. Casler M, Vogel K. Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci. 1999; 39(1):12–20. Frank A, Hofmann L. Light quality and stem numbers in cool-season forage grasses. Crop Sci. 1994; 34(2):468–73. Byrne S, Guiney E, Barth S, Donnison I, Mur LA, Milbourne D. Identification of coincident qtl for days to heading, spike length and spikelets per spike in Lolium perenne L.Euphytica. 2009; 166(1):61–70. Armstead IP, Turner LB, Farrell M, Skøt L, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO. Synteny between a major heading-date qtl in perennial ryegrass (Lolium perenne L.) and the hd3 heading-date locus in rice. Theor Appl Genet. 2004; 108(5):822–8. Jensen LB, Andersen JR, Frei U, Xing Y, Taylor C, Holm PB, Lübberstedt T. Qtl mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat vrn1. Theor Appl Genet. 2005; 110(3):527–36. Armstead I, Turner L, Marshall A, Humphreys M, King I, Thorogood D. Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative trait loci analysis and comparative genetics. New Phytologist. 2008; 178(3):559–71. Barre P, Moreau L, Mi F, Turner L, Gastal F, Julier B, Ghesquière M. Quantitative trait loci for leaf length in perennial ryegrass (Lolium perenne L.)Grass Forage Sci. 2009; 64(3):310–21. Studer B, Jensen LB, Hentrup S, Brazauskas G, Kölliker R, Lübberstedt T. Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.)Theor Appl Genet. 2008; 117(5):781–91. Skøt L, Humphreys MO, Armstead I, Heywood S, Skøt KP, Sanderson R, Thomas ID, Chorlton KH, Hamilton NRS. An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.)Mol Breed. 2005; 15(3):233–45. Skøt L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID. Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.)Genetics. 2007; 177(1):535–47. Shinozuka H, Cogan NO, Spangenberg GC, Forster JW. Quantitative trait locus (qtl) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.)BMC Genetics. 2012; 13(1):1. Andersen JR, Jensen LB, Asp T, Lübberstedt T. Vernalization response in perennial ryegrass (Lolium perenne L.) involves orthologues of diploid wheat (Triticum monococcum) vrn1 and rice (Oryza sativa) hd1. Plant Mol Biol. 2006; 60(4):481–94. Fè D, Cericola F, Byrne S, Lenk I, Ashraf BH, Pedersen MG, Roulund N, Asp T, Janss L, Jensen CS, et al. Genomic dissection and prediction of heading date in perennial ryegrass. BMC Genomics. 2015; 16(1):1. Pfeifer M, Martis M, Asp T, Mayer KF, Lübberstedt T, Byrne S, Frei U, Studer B. The perennial ryegrass genomezipper: targeted use of genome resources for comparative grass genomics. Plant Physiol. 2013; 161(2):571–82. Studer B, Byrne S, Nielsen RO, Panitz F, Bendixen C, Islam MS, Pfeifer M, Lübberstedt T, Asp T. A transcriptome map of perennial ryegrass (Lolium perenne L.)BMC Genomics. 2012; 13(1):140. Bates D, Maechler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4.Journal of Statistical Software; 67(1):1–48. doi:10.18637/jss.v067.i01. Fè D, Pedersen MG, Jensen CS, Jensen J. Genetic and environmental variation in a commercial breeding program of perennial ryegrass. Crop Sci. 2015; 55(2):631–40. Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, Mayer K, Campbell JD, Czaban A, Hentrup S, et al. A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J. 2015; 84(4):816–26. Andrés F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet. 2012; 13(9):627–39. Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, Feldblyum T, Nierman W, Benito MI, Lin X, et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000; 408(6814):796–815. Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K, Lucas S, Harmon-Smith M, Lail K, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010; 463(7282):763–8. Consortium IBGS, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012; 491(7426):711–6. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, et al. The b73 maize genome: complexity, diversity, and dynamics. Science. 2009; 326(5956):1112–5. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009; 457(7229):551–6. Project IRGS, et al. The map-based sequence of the rice genome. Nature. 2005; 436(7052):793–800. Gabaldón T. Large-scale assignment of orthology: back to phylogenetics. Genome Biol. 2008; 9(10):235. Mishra P, Panigrahi KC. Gigantea–an emerging story. Front Plant Sci. 2015; 6:8. Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J. Regulation of vrn-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol. 2005; 138(4):2364–373. Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U. Evolution of the pebp gene family in plants: functional diversification in seed plant evolution. Plant Physiol. 2011; 156(4):1967–77. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science. 1999; 286(5446):1960–62. Peng FY, Hu Z, Yang RC. Genome-wide comparative analysis of flowering-related genes in Arabidopsis, wheat, and barley. Int J Plant Genomics. 2015;2015. Kinoshita T, Ono N, Hayashi Y, Morimoto S, Nakamura S, Soda M, Kato Y, Ohnishi M, Nakano T, Inoue S-I, et al. Flowering locus t regulates stomatal opening. Curr Biol. 2011; 21(14):1232–8. Wang R, Albani MC, Vincent C, Bergonzi S, Luan M, Bai Y, Kiefer C, Castillo R, Coupland G. Aa tfl1 confers an age-dependent response to vernalization in perennial Arabis alpina. Plant Cell. 2011; 23(4):1307–21. Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T. Twin sister of ft (tsf) acts as a floral pathway integrator redundantly with ft. Plant Cell Physiol. 2005; 46(8):1175–89. Yoo SJ, Chung KS, Jung SH, Yoo SY, Lee JS, Ahn JH. Brother of ft and tfl1 (bft) has tfl1-like activity and functions redundantly with tfl1 in inflorescence meristem development in Arabidopsis. Plant J. 2010; 63(2):241–53. Jensen CS, Salchert K, Nielsen KK. A terminal flower1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol. 2001; 125(3):1517–28. Williamson ML. Differential responses of tillers to floral induction in perennial ryegrass (Lolium perenne L.) : implications for perenniality. Massey University. Palmerston North, New Zealand. 2008. http://mro.massey.ac.nz/handle/10179/842. Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Oyant LH-S, Araki T, Denoyes B, Foucher F. The tfl1 homologue ksn is a regulator of continuous flowering in rose and strawberry. Plant J. 2012; 69(1):116–25. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (gbs) approach for high diversity species. PLoS ONE. 2011; 6(5):19379. Buffalo:Scythe - A Bayesian adapter trimmer version 0.994 BETA. 2011. https://github.com/vsbuffalo/scythe. Accessed 7 Nov 2015. Joshi NA FJ. Sickle - A windowed adaptive trimming tool for FASTQ files using quality. 2011. https://github.com/ucdavis-bioinformatics/sickle. Accessed 7 Nov 2015. Joshi NA FJ. Sabre - A barcode demultiplexing and trimming tool for FastQ files. 2011. https://github.com/najoshi/sabre. Accessed 7 Nov 2015. Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009; 25(14):1754–60. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M, et al. A framework for variation discovery and genotyping using next-generation dna sequencing data. Nat Genet. 2011; 43(5):491–8. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z. Gapit: genome association and prediction integrated tool. Bioinformatics. 2012; 28(18):2397–9. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological). 1995; 57(1):289–300. Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze. 1936; 8:3–62. Chang CC, Chow CC, Tellier L, Vattikuti S, Purcell SM, Lee JJ. Second-generation plink: rising to the challenge of larger and richer datasets. Gigascience. 2015; 4(1):1–16. Gaunt TR, Rodríguez S, Day IN. Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool’cubex’. BMC Bioinforma. 2007; 8(1):428. Team RC. A language and environment for statistical computing. Vienna, Austria. 2014; 2015. UniProt:a hub for protein information. Nucleic acids research. 2015;43(Database issue):D204-12. Proost S, Van Bel M, Vaneechoutte D, Van de Peer Y, Inzé D, Mueller-Roeber B, Vandepoele K. Plaza 3.0: an access point for plant comparative genomics. Nucleic Acids Res. 2015; 43(Database issue):D974-81. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32(5):1792–7. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. Mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30(12):2725–9. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl biosci CABIOS. 1992; 8(3):275–82.