Lymphoma tế bào B lớn khuếch tán có nguồn gốc từ lymphoma vùng biên với sự mất đoạn nhiễm sắc thể 20q12 và đột biến điểm gen BIRC3: một báo cáo trường hợp

Diagnostic Pathology - Tập 11 - Trang 1-10 - 2016
Joseph Hatem1, April M. Schrank-Hacker1, Christopher D. Watt1, Jennifer J. D. Morrissette1, Adam I. Rubin2, Ellen J. Kim2, Sunita D. Nasta3, Mariusz A. Wasik1, Agata M. Bogusz1
1Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia USA.
2Department of Dermatology, University of Pennsylvania, Philadelphia, USA
3Department of Medicine, University of Pennsylvania, Philadelphia, USA

Tóm tắt

Lymphoma tế bào B lớn khuếch tán (DLBCL) thường dẫn đến sự thay đổi cấu trúc hạch bạch huyết do sự xâm lấn của các tế bào ác tính. Hiếm khi (<1%), DLBCL có thể xuất hiện với kiểu hình giữa các nang (DLBCL-IF) mà vẫn bảo tồn các nang bạch huyết. Người ta giả thuyết rằng DLBCL-IF có nguồn gốc từ các tế bào B vùng biên và có thể đại diện cho sự chuyển đổi tế bào lớn của lymphoma vùng biên (MZL), tuy nhiên chưa có bằng chứng trực tiếp nào được đưa ra cho đến nay. Ở đây, chúng tôi mô tả một trường hợp hiếm gặp của DLBCL-IF có tính chẩn đoán khó khăn liên quan đến một hạch bạch huyết ở một bệnh nhân có tiền sử hạch bạch huyết kéo dài nhiều năm và MZL liên quan đến da. Một người đàn ông 53 tuổi đã đến khám tại Phòng khám Da liễu của chúng tôi do có lịch sử ngứa toàn thân kéo dài một năm, mệt mỏi trong 2-3 tháng, buồn nôn và phát ban giữa lưng đã được sinh thiết. PET (hình ảnh phát xạ positron)/CT (chụp cắt lớp vi tính) đã được thực hiện và cho thấy tình trạng hạch bạch huyết ở bẹn, vùng chậu, sau phúc mạc, nách và cổ. Bệnh nhân được chuyển đến phẫu thuật để sinh thiết hạch bạch huyết bẹn phải. Các lát cắt nhuộm H&E chẩn đoán và các nghiên cứu bổ sung đã được xem xét cho mẫu hạch bạch huyết và da. Tính đồng nhất tế bào B thông qua PCR và các nghiên cứu giải mã đã được thực hiện trên cả hai mẫu. Chúng tôi chứng minh rằng MZL và DLBCL-IF của bệnh nhân này có liên quan đến tính đồng nhất, cho thấy một cách mạnh mẽ rằng sự chuyển đổi từ MZL sang DLBCL đã xảy ra. Hơn nữa, chúng tôi đã xác định được sự mất đoạn mới của cánh dài nhiễm sắc thể 20 (del(20q12)) và một đột biến điểm trong BIRC3 (Protein chứa miền lặp IAP virus Baculovirus 3) trong DLBCL của bệnh nhân này, vắng mặt trong MZL, cho thấy rằng những biến đổi di truyền này đã góp phần vào sự chuyển đổi thành tế bào lớn. Theo hiểu biết của chúng tôi, đây là báo cáo đầu tiên cung cấp bằng chứng phân tử cho mối liên hệ trước đây được nghi ngờ giữa MZL và DLBCL-IF. Ngoài ra, chúng tôi mô tả lần đầu tiên del(20q12) và đột biến điểm trong BIRC3 trong DLBCL. Phát hiện của chúng tôi cũng nâng cao nhận thức về DLBCL-IF và thảo luận về những cạm bẫy trong chẩn đoán của thực thể hiếm này.

Từ khóa

#Diffuse large B-cell lymphoma #interfollicular pattern #marginal zone lymphoma #B-cell clonality #chromosomal deletion #BIRC3 mutation

Tài liệu tham khảo

Swerdlow Sh CE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman J. WHO classification of tumours of haematopoietic and lymphoid tissues, vol 4th edition. World Health Organization and classification of tumours. Lyon: International Agency for Research on Cancer (IARC); 2008. Carbone A, Gloghini A, Kwong YL, Younes A. Diffuse large B cell lymphoma: using pathologic and molecular biomarkers to define subgroups for novel therapy. Ann hematol. 2014;93(8):1263–77. doi:10.1007/s00277-014-2116-y. Gifford GK, Gill AJ, Stevenson WS. Molecular subtyping of diffuse large B-cell lymphoma: update on biology, diagnosis and emerging platforms for practising pathologists. Pathology. 2016;48(1):5–16. doi:10.1016/j.pathol.2015.11.017. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson Jr J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi:10.1038/35000501. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, Muller-Hermelink HK, Campo E, Braziel RM, Jaffe ES, Pan Z, Farinha P, Smith LM, Falini B, Banham AH, Rosenwald A, Staudt LM, Connors JM, Armitage JO, Chan WC. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82. doi:10.1182/blood-2003-05-1545. Yamauchi A, Ikeda J, Nakamichi I, Kohara M, Fukuhara S, Hino M, Kanakura Y, Ogawa H, Sugiyama H, Kanamaru A, Aozasa K, Osaka Lymphoma Study G. Diffuse large B-cell lymphoma showing an interfollicular pattern of proliferation: a study of the Osaka Lymphoma Study Group. Histopathology. 2008;52(6):731–7. doi:10.1111/j.1365-2559.2008.03018.x. Wada N, Zaki MA, Kohara M, Ogawa H, Sugiyama H, Nomura S, Matsumura I, Hino M, Kanakura Y, Inagaki H, Morii E, Aozasa K. Diffuse large B cell lymphoma with an interfollicular pattern of proliferation shows a favourable prognosis: a study of the Osaka Lymphoma Study Group. Histopathology. 2012;60(6):924–32. doi:10.1111/j.1365-2559.2011.04161.x. Marafioti T, Jones M, Facchetti F, Diss TC, Du MQ, Isaacson PG, Pozzobon M, Pileri SA, Strickson AJ, Tan SY, Watkins F, Mason DY. Phenotype and genotype of interfollicular large B cells, a subpopulation of lymphocytes often with dendritic morphology. Blood. 2003;102(8):2868–76. doi:10.1182/blood-2003-03-0692. Sloan CE, Luskin MR, Boccuti AM, Sehgal AR, Zhao J, Daber RD, Morrissette JJ, Luger SM, Bagg A, Gimotty PA, Carroll M. A modified integrated genetic model for risk prediction in younger patients with acute myeloid leukemia. Plos one. 2016;11(4):e0153016. doi:10.1371/journal.pone.0153016. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, Van Vlierberghe P, Dolgalev I, Thomas S, Aminova O, Huberman K, Cheng J, Viale A, Socci ND, Heguy A, Cherry A, Vance G, Higgins RR, Ketterling RP, Gallagher RE, Litzow M, van den Brink MR, Lazarus HM, Rowe JM, Luger S, Ferrando A, Paietta E, Tallman MS, Melnick A, Abdel-Wahab O, Levine RL. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N engl j med. 2012;366(12):1079–89. doi:10.1056/NEJMoa1112304. Daber R, Sukhadia S, Morrissette JJ. Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets. Cancer genet. 2013;206(12):441–8. doi:10.1016/j.cancergen.2013.11.005. Kern JB, Duff DJ, Odem JL, Esebua M, Smith LR, Doll D, Wang M. A novel del(20q) in aggressive nodal marginal zone lymphoma. Case rep pathol. 2013;2013:784176. doi:10.1155/2013/784176. Asimakopoulos FA, Green AR. Deletions of chromosome 20q and the pathogenesis of myeloproliferative disorders. Br j haematol. 1996;95(2):219–26. Pellagatti A, Boultwood J. The molecular pathogenesis of the myelodysplastic syndromes. Eur j haematol. 2015;95(1):3–15. doi:10.1111/ejh.12515. Liu YC, Miyazawa K, Sashida G, Kodama A, Ohyashiki K. Deletion (20q) as the sole abnormality in waldenstrom macroglobulinemia suggests distinct pathogenesis of 20q11 anomaly. Cancer genet cytogenet. 2006;169(1):69–72. doi:10.1016/j.cancergencyto.2006.03.013. Pradhan D, Amin RM, Jones MW, Surti U, Parwani AV. Giant cell arteritis of the female genital tract with occult temporal arteritis and marginal zone lymphoma harboring novel 20q deletion: a case report and literature review. Int j surg pathol. 2016;24(1):78–84. doi:10.1177/1066896915605165. Yin CC, Tang G, Lu G, Feng X, Keating MJ, Medeiros LJ, Abruzzo LV. Del(20q) in patients with chronic lymphocytic leukemia: a therapy-related abnormality involving lymphoid or myeloid cells. Mod pathol. 2015;8:1130–7. doi:10.1038/modpathol.2015.58. Yin CC, Peng J, Li Y, Shamanna RK, Muzzafar T, Dinardo C, Khoury JD, Li S, Medeiros LJ, Wang SA, Tang G. Clinical significance of newly emerged isolated del(20q) in patients following cytotoxic therapies. Mod pathol. 2015;28(8):1014–22. doi:10.1038/modpathol.2015.66. Heinrichs S, Conover LF, Bueso-Ramos CE, Kilpivaara O, Stevenson K, Neuberg D, Loh ML, Wu WS, Rodig SJ, Garcia-Manero G, Kantarjian HM, Look AT. MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy. Elife. 2013;2:e00825. doi:10.7554/eLife.00825. Futterer A, Campanero MR, Leonardo E, Criado LM, Flores JM, Hernandez JM, San Miguel JF, Martinez AC. Dido gene expression alterations are implicated in the induction of hematological myeloid neoplasms. J clin invest. 2005;115(9):2351–62. doi:10.1172/JCI24177. Gurvich N, Perna F, Farina A, Voza F, Menendez S, Hurwitz J, Nimer SD. L3MBTL1 polycomb protein, a candidate tumor suppressor in del(20q12) myeloid disorders, is essential for genome stability. Proc natl acad sci u s a. 2010;107(52):22552–7. doi:10.1073/pnas.1017092108. Clifford R, Louis T, Robbe P, Ackroyd S, Burns A, Timbs AT, Wright Colopy G, Dreau H, Sigaux F, Judde JG, Rotger M, Telenti A, Lin YL, Pasero P, Maelfait J, Titsias M, Cohen DR, Henderson SJ, Ross MT, Bentley D, Hillmen P, Pettitt A, Rehwinkel J, Knight SJ, Taylor JC, Crow YJ, Benkirane M, Schuh A. SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood. 2014;123(7):1021–31. doi:10.1182/blood-2013-04-490847. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, Wells VA, Grunn A, Messina M, Elliot O, Chan J, Bhagat G, Chadburn A, Gaidano G, Mullighan CG, Rabadan R, Dalla-Favera R. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat genet. 2011;43(9):830–7. doi:10.1038/ng.892. Vaux DL, Silke J. IAPs, RINGs and ubiquitylation. Nat rev mol cell biol. 2005;6(4):287–97. doi:10.1038/nrm1621. Silke J, Vucic D. IAP family of cell death and signaling regulators. Methods enzymol. 2014;545:35–65. doi:10.1016/B978-0-12-801430-1.00002-0. Smolewski P, Robak T. Inhibitors of apoptosis proteins (IAPs) as potential molecular targets for therapy of hematological malignancies. Curr mol med. 2011;11(8):633–49. Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S, Chiaretti S, Del Giudice I, Fabbri G, Bruscaggin A, Spina V, Deambrogi C, Marinelli M, Fama R, Greco M, Daniele G, Forconi F, Gattei V, Bertoni F, Deaglio S, Pasqualucci L, Guarini A, Dalla-Favera R, Foa R, Gaidano G. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood. 2012;119(12):2854–62. doi:10.1182/blood-2011-12-395673. Rossi D, Deaglio S, Dominguez-Sola D, Rasi S, Vaisitti T, Agostinelli C, Spina V, Bruscaggin A, Monti S, Cerri M, Cresta S, Fangazio M, Arcaini L, Lucioni M, Marasca R, Thieblemont C, Capello D, Facchetti F, Kwee I, Pileri SA, Foa R, Bertoni F, Dalla-Favera R, Pasqualucci L, Gaidano G. Alteration of BIRC3 and multiple other NF-kappaB pathway genes in splenic marginal zone lymphoma. Blood. 2011;118(18):4930–4. doi:10.1182/blood-2011-06-359166. Yang Y, Kelly P, Shaffer AL, 3rd, Schmitz R, Yoo HM, Liu X, Huang da W, Webster D, Young RM, Nakagawa M, Ceribelli M, Wright GW, Yang Y, Zhao H, Yu X, Xu W, Chan WC, Jaffe ES, Gascoyne RD, Campo E, Rosenwald A, Ott G, Delabie J, Rimsza L, Staudt LM. Targeting non-proteolytic protein ubiquitination for the treatment of diffuse large B cell lymphoma. Cancer cell. (2016);29(4):494–507. doi:10.1016/j.ccell.2016.03.006 Yamaguchi H, Hung MC. Regulation and role of EZH2 in cancer. Cancer res treat. 2014;46(3):209–22. doi:10.4143/crt.2014.46.3.209. Herviou L, Cavalli G, Cartron G, Klein B, Moreaux J. EZH2 in normal hematopoiesis and hematological malignancies. Oncotarget. 2016;7(3):2284–96. 10.18632/oncotarget.6198. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, Yap D, Humphries RK, Griffith OL, Shah S, Zhu H, Kimbara M, Shashkin P, Charlot JF, Tcherpakov M, Corbett R, Tam A, Varhol R, Smailus D, Moksa M, Zhao Y, Delaney A, Qian H, Birol I, Schein J, Moore R, Holt R, Horsman DE, Connors JM, Jones S, Aparicio S, Hirst M, Gascoyne RD, Marra MA. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat genet. (2010);42(2):181–185. doi:10.1038/ng.518 Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat med. 2016;22(2):128–34. doi:10.1038/nm.4036. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra 3rd A, Diaz E, Lafrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, Mchugh CF, Brandt M, Miller WH, Dhanak D, Verma SK, Tummino PJ, Creasy CL. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492(7427):108–12. doi:10.1038/nature11606. Yu YL, Su KJ, Hsieh YH, Lee HL, Chen TY, Hsiao PC, Yang SF. Effects of EZH2 polymorphisms on susceptibility to and pathological development of hepatocellular carcinoma. Plos one. 2013;8(9):e74870. doi:10.1371/journal.pone.0074870. Paolicchi E, Pacetti P, Giovannetti E, Mambrini A, Orlandi M, Crea F, Romani AA, Tartarini R, Danesi R, Peters GJ, Cantore M. A single nucleotide polymorphism in EZH2 predicts overall survival rate in patients with cholangiocarcinoma. Oncol lett. 2013;6(5):1487–91. doi:10.3892/ol.2013.1559. Ma ZB, Guo GH, Niu Q, Shi N. Role of EZH2 polymorphisms in esophageal squamous cell carcinoma risk in Han Chinese population. Int j mol sci. 2014;15(7):12688–97. doi:10.3390/ijms150712688. Yu YL, Su KJ, Hsieh MJ, Wang SS, Wang PH, Weng WC, Yang SF. Impact of EZH2 polymorphisms on urothelial cell carcinoma susceptibility and clinicopathologic features. Plos one. 2014;9(4):e93635. doi:10.1371/journal.pone.0093635.