Mapping the electrophysiological and morphological properties of CA1 pyramidal neurons along the longitudinal hippocampal axis

Hippocampus - Tập 26 Số 3 - Trang 341-361 - 2016
Ruchi Malik1, Kelly A. Dougherty1,2, Komal Parikh1, Connor Byrne1, Daniel Johnston1
1Center for Learning and Memory, University of Texas at Austin , Austin, Texas.
2Department of Biology, Rhodes College, Memphis, Tennessee

Tóm tắt

ABSTRACT

Differences in behavioral roles, anatomical connectivity, and gene expression patterns in the dorsal, intermediate, and ventral regions of the hippocampus are well characterized. Relatively fewer studies have, however, focused on comparing the physiological properties of neurons located at different dorsoventral extents of the hippocampus. Recently, we reported that dorsal CA1 neurons are less excitable than ventral neurons. There is little or no information for how neurons in the intermediate hippocampus compare to those from the dorsal and ventral ends. Also, it is not known whether the transition of properties along the dorsoventral axis is gradual or segmented. In this study, we developed a statistical model to predict the dorsoventral position of transverse hippocampal slices. Using current clamp recordings combined with this model, we found that CA1 neurons in dorsal, intermediate, and ventral hippocampus have distinct electrophysiological and morphological properties and that the transition in most (but not all) of these properties from the ventral to dorsal end is gradual. Using linear and segmented regression analyses, we found that input resistance and resting membrane potential changed linearly along the V–D axis. Interestingly, the transition in resonance frequency, rebound slope, dendritic branching in stratum radiatum, and action potential properties was segmented along the V–D axis. Together, the findings from this study highlight the heterogeneity in CA1 neuronal properties along the entire longitudinal axis of hippocampus. © 2015 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

10.1016/S0006-8993(01)02252-1

10.1016/0306-4522(89)90424-7

10.1016/0006-8993(89)90842-1

10.1016/j.neubiorev.2004.03.004

10.1371/journal.pbio.1000089

10.1038/nrn2148

10.1016/0006-8993(86)90300-8

10.1523/JNEUROSCI.3520-07.2007

10.1002/hipo.20504

10.1038/nn0602-857

10.1002/(SICI)1096-9861(19980817)398:1<25::AID-CNE3>3.0.CO;2-B

10.1073/pnas.0812608106

10.1113/jphysiol.2012.242693

10.1152/jn.00010.2013

10.1073/pnas.94.13.7070

10.1016/j.neuron.2009.11.031

10.1002/cne.901780104

10.1016/j.neuron.2008.10.044

10.1016/0006-8993(85)91309-5

10.1523/JNEUROSCI.0609-09.2009

10.1126/science.1139207

10.1002/hipo.22000

10.1113/jphysiol.2014.280826

10.1016/j.neuron.2011.09.007

10.1016/S0166-2236(00)01547-2

10.1523/JNEUROSCI.14-12-07347.1994

10.1523/JNEUROSCI.1176-14.2014

10.1152/jn.00951.2014

10.1113/jphysiol.2005.095042

10.1073/pnas.152112399

10.1126/science.1157086

10.1126/science.1221489

10.1523/JNEUROSCI.18-19-07613.1998

Magee JC., 1999, Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons, Nature, 2, 508

10.1002/hipo.20237

10.1523/JNEUROSCI.5870-11.2012

10.1074/jbc.C112.367110

10.1523/JNEUROSCI.22-23-10106.2002

10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7

10.1073/pnas.92.21.9697

10.1523/JNEUROSCI.0835-08.2008

10.1016/S0092-8674(04)01055-4

10.1523/JNEUROSCI.2358-07.2007

10.1007/s00429-014-0831-8

10.1016/j.neuroscience.2006.02.003

10.1016/S0006-8993(02)02958-X

10.1016/j.neuron.2012.07.015

10.1097/00001756-199410270-00014

10.1152/jn.00082.2009

10.1038/171387a0

10.1038/nrn3785

10.1002/cne.901720104

10.1016/j.neuron.2008.12.008

10.1523/JNEUROSCI.0472-13.2013

10.1038/nn.3562

10.1016/j.nlm.2006.12.006

10.1113/jphysiol.2009.185975

10.1016/S0166-4328(01)00256-X