Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life
Tóm tắt
The inorganic (Pi) phosphate transporter (PiT) family comprises known and putative Na+- or H+-dependent Pi-transporting proteins with representatives from all kingdoms. The mammalian members are placed in the outer cell membranes and suggested to supply cells with Pi to maintain house-keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian PiT family members. Besides being Na+-dependent Pi (NaPi) transporters, the mammalian PiT paralogs, PiT1 and PiT2, also are receptors for gamma-retroviruses. We have here exploited the dual-function of PiT1 and PiT2 to study the structure-function relationship of PiT proteins. We show that the human PiT2 histidine, H502, and the human PiT1 glutamate, E70, - both conserved in eukaryotic PiT family members - are critical for Pi transport function. Noticeably, human PiT2 H502 is located in the C-terminal PiT family signature sequence, and human PiT1 E70 is located in ProDom domains characteristic for all PiT family members. A human PiT2 truncation mutant, which consists of the predicted 10 transmembrane (TM) domain backbone without a large intracellular domain (human PiT2ΔR254-V483), was found to be a fully functional Pi transporter. Further truncation of the human PiT2 protein by additional removal of two predicted TM domains together with the large intracellular domain created a mutant that resembles a bacterial phosphate permease and an archaeal putative phosphate permease. This human PiT2 truncation mutant (human PiT2ΔL183-V483) did also support Pi transport albeit at very low levels. The results suggest that the overall structure of the Pi-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein sequences of PiT family members from all kingdoms, along with the studies of the dual functions of the human PiT paralogs show that these proteins are excellent as models for studying the evolution of a protein's structure-function relationship.
Tài liệu tham khảo
Oláh Z, Lehel C, Anderson WB, Eiden MV, Wilson CA: The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. J Biol Chem. 1994, 269 (41): 25426-25431.
Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD: Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA. 1994, 91 (15): 7071-7075. 10.1073/pnas.91.15.7071.
Kavanaugh MP, Kabat D: Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney Int. 1996, 49 (4): 959-963. 10.1038/ki.1996.135.
Virkki LV, Biber J, Murer H, Forster IC: Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol. 2007, 293 (3): F643-654. 10.1152/ajprenal.00228.2007.
Wain HM, Bruford EA, Lovering RC, Lush MJ, Wright MW, Povey S: Guidelines for human gene nomenclature. Genomics. 2002, 79 (4): 464-470. 10.1006/geno.2002.6748.
Saier MH: A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev. 2000, 64 (2): 354-411. 10.1128/MMBR.64.2.354-411.2000.
O'Hara B, Johann SV, Klinger HP, Blair DG, Rubinson H, Dunn KJ, Sass P, Vitek SM, Robins T: Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ. 1990, 1 (3): 119-127.
van Zeijl M, Johann SV, Closs E, Cunningham J, Eddy R, Shows TB, O'Hara B: A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc Natl Acad Sci USA. 1994, 91 (3): 1168-1172. 10.1073/pnas.91.3.1168.
Miller DG, Edwards RH, Miller AD: Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc Natl Acad Sci USA. 1994, 91 (1): 78-82. 10.1073/pnas.91.1.78.
Miller DG, Miller AD: A family of retroviruses that utilize related phosphate transporters for cell entry. J Virol. 1994, 68 (12): 8270-8276.
Takeuchi Y, Vile RG, Simpson G, O'Hara B, Collins MK, Weiss RA: Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus. J Virol. 1992, 66 (2): 1219-1222.
Wilson CA, Farrell KB, Eiden MV: Properties of a unique form of the murine amphotropic leukemia virus receptor expressed on hamster cells. J Virol. 1994, 68 (12): 7697-7703.
Tailor CS, Takeuchi Y, O'Hara B, Johann SV, Weiss RA, Collins MK: Mutation of amino acids within the gibbon ape leukemia virus (GALV) receptor differentially affects feline leukemia virus subgroup B, simian sarcoma-associated virus, and GALV infections. J Virol. 1993, 67 (11): 6737-6741.
Mann BJ, Bowman BJ, Grotelueschen J, Metzenberg RL: Nucleotide sequence of pho-4+, encoding a phosphate-repressible phosphate permease of Neurospora crassa. Gene. 1989, 83 (2): 281-289. 10.1016/0378-1119(89)90114-5.
Martinez P, Persson BL: Identification, cloning and characterization of a derepressible Na+- coupled phosphate transporter in Saccharomyces cerevisiae. Mol Gen Genet. 1998, 258 (6): 628-638. 10.1007/s004380050776.
Harris RM, Webb DC, Howitt SM, Cox GB: Characterization of PitA and PitB from Escherichia coli. J Bacteriol. 2001, 183 (17): 5008-5014. 10.1128/JB.183.17.5008-5014.2001.
Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M: Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell. 1999, 11 (11): 2153-2166. 10.1105/tpc.11.11.2153.
Bøttger P, Pedersen L: Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2. Febs J. 2005, 272 (12): 3060-3074. 10.1111/j.1742-4658.2005.04720.x.
Werner A, Kinne RK: Evolution of the Na-P(i) cotransport systems. Am J Physiol Regul Integr Comp Physiol. 2001, 280 (2): R301-312.
Johann SV, Gibbons JJ, O'Hara B: GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J Virol. 1992, 66 (3): 1635-1640.
Chien ML, Foster JL, Douglas JL, Garcia JV: The amphotropic murine leukemia virus receptor gene encodes a 71- kilodalton protein that is induced by phosphate depletion. J Virol. 1997, 71 (6): 4564-4570.
Farrell KB, Russ JL, Murthy RK, Eiden MV: Reassessing the role of region A in Pit1-mediated viral entry. J Virol. 2002, 76 (15): 7683-7693. 10.1128/JVI.76.15.7683-7693.2002.
Farrell KB, Tusnady GE, Eiden MV: New structural arrangement of the extracellular regions of the phosphate transporter SLC20A1, the receptor for gibbon ape leukemia virus. J Biol Chem. 2009, 284 (43): 29979-29987. 10.1074/jbc.M109.022566.
Salaün C, Rodrigues P, Heard JM: Transmembrane topology of PiT-2, a phosphate transporter-retrovirus receptor. J Virol. 2001, 75 (12): 5584-5592. 10.1128/JVI.75.12.5584-5592.2001.
Pedersen L, van Zeijl M, Johann SV, O'Hara B: Fungal phosphate transporter serves as a receptor backbone for gibbon ape leukemia virus. J Virol. 1997, 71 (10): 7619-7622.
Lundorf MD, Pedersen FS, O'Hara B, Pedersen L: Amphotropic murine leukemia virus entry is determined by specific combinations of residues from receptor loops 2 and 4. J Virol. 1999, 73 (4): 3169-3175.
Salaün C, Maréchal V, Heard JM: Transport-deficient Pit2 phosphate transporters still modify cell surface oligomers structure in response to inorganic phosphate. J Mol Biol. 2004, 340 (1): 39-47. 10.1016/j.jmb.2004.04.050.
Bøttger P, Pedersen L: Two highly conserved glutamate residues critical for type III sodium-dependent phosphate transport revealed by uncoupling transport function from retroviral receptor function. J Biol Chem. 2002, 277 (45): 42741-42747. 10.1074/jbc.M207096200.
Beck L, Leroy C, Salaun C, Margall-Ducos G, Desdouets C, Friedlander G: Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J Biol Chem. 2009, 284 (45): 31363-31374. 10.1074/jbc.M109.053132.
Saier MH: Eukaryotic transmembrane solute transport systems. Int Rev Cytol. 1999, 190: 61-136. 10.1016/S0074-7696(08)62146-4.
Bøttger P, Pedersen L: The central half of Pit2 is not required for its function as a retroviral receptor. J Virol. 2004, 78 (17): 9564-9567. 10.1128/JVI.78.17.9564-9567.2004.
Higgins DG: CLUSTAL V: multiple alignment of DNA and protein sequences. Methods Mol Biol. 1994, 25: 307-318.
Sonnhammer EL, von Heijne G, Krogh A: A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol. 1998, 6: 175-182.
Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A: Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 1997, 10 (6): 673-676. 10.1093/protein/10.6.673.
Acquisti C, Kleffe J, Collins S: Oxygen content of transmembrane proteins over macroevolutionary time scales. Nature. 2007, 445 (7123): 47-52. 10.1038/nature05450.
Wheelan SJ, Church DM, Ostell JM: Spidey: a tool for mRNA-to-genomic alignments. Genome Res. 2001, 11 (11): 1952-1957.
Pedersen L, Johann SV, van Zeijl M, Pedersen FS, O'Hara B: Chimeras of receptors for gibbon ape leukemia virus/feline leukemia virus B and amphotropic murine leukemia virus reveal different modes of receptor recognition by retrovirus. J Virol. 1995, 69 (4): 2401-2405.
Maniatis , Sambrook , Fritsch : Molecular Cloning, A Laboratory Manual. 1989, Cold Spring Harbor Laboratory Press, 3
McLachlin JR, Mittereder N, Daucher MB, Kadan M, Eglitis MA: Factors affecting retroviral vector function and structural integrity. Virology. 1993, 195 (1): 1-5. 10.1006/viro.1993.1340.
Miller AD, Chen F: Retrovirus packaging cells based on 10A1 murine leukemia virus for production of vectors that use multiple receptors for cell entry. J Virol. 1996, 70 (8): 5564-5571.
Miller AD, Buttimore C: Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986, 6 (8): 2895-2902.
Miller AD, Garcia JV, von Suhr N, Lynch CM, Wilson C, Eiden MV: Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol. 1991, 65 (5): 2220-2224.
Dreyer K, Pedersen FS, Pedersen L: A 13-amino-acid Pit1-specific loop 4 sequence confers feline leukemia virus subgroup B receptor function upon Pit2. J Virol. 2000, 74 (6): 2926-2929. 10.1128/JVI.74.6.2926-2929.2000.
Godfrey EW, Sanders GE: Effect of water hardness on oocyte quality and embryo development in the African clawed frog (Xenopus laevis). Comp Med. 2004, 54 (2): 170-175.
Bøttger P, Hede SE, Grunnet M, Høyer B, Klærke DA, Pedersen L: Characterization of transport mechanisms and determinants critical for Na+-dependent Pi symport of the PiT family paralogs human PiT1 and PiT2. Am J Physiol Cell Physiol. 2006, 291 (6): C1377-C1387. 10.1152/ajpcell.00015.2006.
Kahsay RY, Gao G, Liao L: An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics. 2005, 21 (9): 1853-1858. 10.1093/bioinformatics/bti303.
Viklund H, Granseth E, Elofsson A: Structural classification and prediction of reentrant regions in alpha-helical transmembrane proteins: application to complete genomes. J Mol Biol. 2006, 361 (3): 591-603. 10.1016/j.jmb.2006.06.037.
Leverett BD, Farrell KB, Eiden MV, Wilson CA: Entry of amphotropic murine leukemia virus is influenced by residues in the putative second extracellular domain of its receptor, Pit2. J Virol. 1998, 72 (6): 4956-4961.
Lundorf MD, Pedersen FS, O'Hara B, Pedersen L: Single amino acid insertion in loop 4 confers amphotropic murine leukemia virus receptor function upon murine Pit1. J Virol. 1998, 72 (5): 4524-4527.
Kaelbling M, Eddy R, Shows TB, Copeland NG, Gilbert DJ, Jenkins NA, Klinger HP, O'Hara B: Localization of the human gene allowing infection by gibbon ape leukemia virus to human chromosome region 2q11-q14 and to the homologous region on mouse chromosome 2. J Virol. 1991, 65 (4): 1743-1747.
Palmer G, Manen D, Bonjour JP, Caverzasio J: Characterization of the human Glvr-1 phosphate transporter/retrovirus receptor gene and promoter region. Gene. 1999, 226 (1): 25-33. 10.1016/S0378-1119(98)00572-1.
Chien ML, O'Neill E, Garcia JV: Phosphate depletion enhances the stability of the amphotropic murine leukemia virus receptor mRNA. Virology. 1998, 240 (1): 109-117. 10.1006/viro.1997.8933.
Garcia JV, Jones C, Miller AD: Localization of the amphotropic murine leukemia virus receptor gene to the pericentromeric region of human chromosome 8. J Virol. 1991, 65 (11): 6316-6319.
Uckert W, Willimsky G, Pedersen FS, Blankenstein T, Pedersen L: RNA levels of human retrovirus receptors Pit1 and Pit2 do not correlate with infectibility by three retroviral vector pseudotypes. Hum Gene Ther. 1998, 9 (17): 2619-2627. 10.1089/hum.1998.9.17-2619.
Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC: The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol. 2009, 296 (4): F691-699. 10.1152/ajprenal.90623.2008.
Miyamoto K, Ito M, Segawa H, Kuwahata M: Secondary hyperparathyroidism and phosphate sensing in parathyroid glands. J Med Invest. 2000, 47 (3-4): 118-122.
Suzuki A, Ammann P, Nishiwaki-Yasuda K, Sekiguchi S, Asano S, Nagao S, Kaneko R, Hirabayashi M, Oiso Y, Itoh M, Caverzasio J: Effects of transgenic Pit-1 overexpression on calcium phosphate and bone metabolism. J Bone Miner Metab. 2010, 28 (2): 139-148. 10.1007/s00774-009-0121-3.
Kimata M, Michigami T, Tachikawa K, Okada T, Koshimizu T, Yamazaki M, Kogo M, Ozono K: Signaling of extracellular inorganic phosphate up-regulates cyclin D1 expression in proliferating chondrocytes via the Na+/Pi cotransporter Pit-1 and Raf/MEK/ERK pathway. Bone. 2010, 47 (5): 938-947. 10.1016/j.bone.2010.08.006.
Beck L, Leroy C, Beck-Cormier S, Forand A, Salaun C, Paris N, Bernier A, Urena-Torres P, Prie D, Ollero M, Coulombel L, Friedlander G: The phosphate transporter PiT1 (Slc20a1) revealed as a new essential gene for mouse liver development. PLoS One. 2010, 5 (2): e9148-10.1371/journal.pone.0009148.
Salaun C, Leroy C, Rousseau A, Boitez V, Beck L, Friedlander G: Identification of a novel transport-independent function of PiT1/SLC20A1 in the regulation of TNF-induced apoptosis. J Biol Chem. 2010, 285 (45): 34408-34418. 10.1074/jbc.M110.130989.
Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L: The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci. 2011, 68 (2): 205-218. 10.1007/s00018-010-0527-z.
Nielsen LB, Pedersen FS, Pedersen L: Expression of type III sodium-dependent phosphate transporters/retroviral receptors mRNAs during osteoblast differentiation. Bone. 2001, 28 (2): 160-166. 10.1016/S8756-3282(00)00418-X.
Palmer G, Zhao J, Bonjour J, Hofstetter W, Caverzasio J: In vivo expression of transcripts encoding the Glvr-1 phosphate transporter/retrovirus receptor during bone development. Bone. 1999, 24 (1): 1-7. 10.1016/S8756-3282(98)00151-3.
Suzuki A, Ghayor C, Guicheux J, Magne D, Quillard S, Kakita A, Ono Y, Miura Y, Oiso Y, Itoh M, Caverzasio J: Enhanced Expression of the Inorganic Phosphate Transporter Pit-1 Is Involved in BMP-2-Induced Matrix Mineralization in Osteoblast-Like Cells. J Bone Miner Res. 2006, 21 (5): 674-683. 10.1359/jbmr.020603.
Sugita A, Kawai S, Hayashibara T, Amano A, Ooshima T, Michigami T, Yoshikawa H, Yoneda T: Cellular ATP synthesis mediated by type III sodium-dependent phosphate transporter Pit-1 is critical to chondrogenesis. J Biol Chem. 2011, 286 (4): 3094-3103. 10.1074/jbc.M110.148403.
Yoshiko Y, Candeliere GA, Maeda N, Aubin JE: Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization. Mol Cell Biol. 2007, 27 (12): 4465-4474. 10.1128/MCB.00104-07.
Li X, Yang HY, Giachelli CM: Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ Res. 2006, 98 (7): 905-912. 10.1161/01.RES.0000216409.20863.e7.
Festing MH, Speer MY, Yang HY, Giachelli CM: Generation of mouse conditional and null alleles of the type III sodium-dependent phosphate cotransporter PiT-1. Genesis. 2009, 47 (12): 858-863.