Sự giải phóng khí từ manti dọc theo các đứt gãy trượt ở Đông Nam Bán Đảo Hàn Quốc

Scientific Reports - Tập 9 Số 1
Hyunwoo Lee1, Hee‐Jun Kim1, Takanori Kagoshima2, Jin‐Oh Park2, Naoto Takahata2, Yuji Sano2,3
1School of Earth and Environmental Sciences, Seoul National University, Gwanak-gu, Republic of Korea
2Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
3Institute of Surface-Earth System Science, Tianjin University, Nankai District, P.R. China

Tóm tắt

Vào ngày 12 tháng 9 năm 2016, một trận động đất ML 5.8 đã xảy ra tại Gyeongju, thuộc vùng đông nam Bán đảo Hàn Quốc (SeKP), mặc dù khu vực này được biết đến với việc cách xa biên giới của mảng kiến tạo hoạt động. Một số đứt gãy trượt được quan sát thấy trong các khu vực thành phố đông dân (ví dụ: Busan, Ulsan, Pohang và Gyeongju). Tuy nhiên, các khí hòa tan liên quan đến các đứt gãy hoạt động hiếm khi được nghiên cứu bất chấp sự hiện diện của nhiều giếng nước ngầm và suối nước nóng trong khu vực. Ở đây, chúng tôi báo cáo các kết quả mới về thành phần khí và giá trị đồng vị của heli và carbon dioxide (CO2) trong các chất lỏng liên quan đến đứt gãy tại khu vực này. Dựa trên hóa học khí, phần lớn mẫu khí rất dày đặc CO2 (lên đến 99.91 vol.%). Tỷ lệ 3He/4He đo được dao động từ 0.07 đến 5.66 Ra, cho thấy rằng đóng góp từ manti lên đến 71%. Phạm vi của thành phần đồng vị carbon (δ13C) của CO2 từ −8.25 đến −24.92‰, cho thấy CO2 có nguồn gốc từ manti được quan sát một cách nhất quán ở nơi mà tỷ lệ 3He/4He cao xuất hiện. Việc suy yếu của các đứt gãy dường như liên quan đến áp suất tăng cường của các chất lỏng chứa heli và CO2 có nguồn gốc từ manti, mặc dù có lớp vỏ dưới dẻo phía dưới khu vực này. Do đó, chúng tôi đề xuất rằng các đứt gãy trượt ở SeKP đã thâm nhập vào manti qua hiện tượng cắt dẻo.

Từ khóa

#đứt gãy trượt #khí đồng vị #manti #Đông Nam Bán Đảo Hàn Quốc #carbon dioxide

Tài liệu tham khảo

O’nions, R. K. & Oxburgh, E. R. Helium, volatile fluxes and the development of continental crust. Earth Planet. Sci. Lett. 90, 331–347 (1988).

Ozima, M. & Podosek, F.A. Noble gas geochemistry (Cambridge University Press 2002).

Sano, Y. & Marty, B. Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274 (1995).

Bräuer, K., Kämpf, H., Niedermann, S., Strauch, G. & Tesař, J. Natural laboratory NW Bohemia: Comprehensive fluid studies between 1992 and 2005 used to trace geodynamic processes. Geochem. Geophys. Geosyst. 9, 1–30 (2008).

Lee, H. et al. Incipient rifting accompanied by the release of subcontinental lithospheric mantle volatiles in the Magadi and Natron basin, East. Africa. J. Volcanol. Geotherm. Res. 346, 118–133 (2017a).

Lee, H. et al. Massive and prolonged deep carbon emissions associated with continental rifting. Nat. Geosci. 9, 145–149 (2016).

Kennedy, B. M. et al. Mantle fluids in the San Andreas fault system, California. Science 278, 1278–1281 (1997).

Kennedy, B. M. & Van Soest, M. C. Flow of mantle fluids through the ductile lower crust: Helium isotope trends. Science 318, 1433–1436 (2007).

Doğan, T. et al. Adjacent releases of mantle helium and soil CO2 from active faults: Observations from the Marmara region of the North Anatolian Fault zone, Turkey. Geochem. Geophys. Geosyst., 10 (2009).

Kulongoski, J. T. et al. Volatile fluxes through the Big Bend section of the San Andreas Fault, California: Helium and carbon-dioxide systematics. Chem. Geol. 339, 92–102 (2013).

Boles, J. R., Garven, G., Camacho, H. & Lupton, J. E. Mantle helium along the Newport‐Inglewood fault zone, Los Angeles basin, California: A leaking paleo‐subduction zone. Geochem. Geophys. Geosyst. 16, 2364–2381 (2015).

Byerlee, J. D. Friction, overpressure and fault normal compression. Geophys. Res. Lett. 17, 2109–2112 (1990).

Inbal, A., Ampuero, J. P. & Clayton, R. W. Localized seismic deformation in the upper mantle revealed by dense seismic arrays. Science 354, 88–92 (2016).

Choi, J. H., Yang, S. J., Han, S. R. & Kim, Y. S. Fault zone evolution during Cenozoic tectonic inversion in SE Korea. J. Asian Earth Sci. 98, 167–177 (2015).

Chun, S. S. & Chough, S. K. Tectonic history of Cretaceous sedimentary basins in the southwestern Korean Peninsula and Yellow Sea. In: Chough, S.K. Ed., Sedimentary Basins in the Korean Peninsula and Adjacent Seas. Korean Sediment. Res. Group Spec. Publ. Harnlimwon Publishers, Seoul, 60–76 (1992).

Lee, D. W. Strike-slip fault tectonics and basin formation during the Cretaceous in the Korean Peninsula. ISL ARC 8, 218–231 (1999).

Cheon, Y. et al. Tectonically controlled multiple stages of deformation along the Yangsan Fault Zone, SE Korea, since Late Cretaceous. J ASIAN EARTH SCI 170, 188–207 (2019).

Kim, J. S., Son, M., Kim, J. S. & Kim, J. 40Ar/39Ar ages of the Tertiary dike swarm and volcanic rocks, SE Korea. J. Petrol. Soc. Korea, 14, 93–107 (in Korean with English abstract) (2005).

Son, M. et al. Paleogene dyke swarms in the eastern Geoje Island, Korea: their absolute ages and tectonic implications. J. Petrol. Soc. Korea, 16, 82–99 (in Korean with English abstract) (2007).

Son, M. et al. Miocene tectonic evolution of the basins and fault systems, SE Kora: dextral, simple shear during the East Sea (Sea of Japan) opening. J. Geol. Soc. 172, 664–680 (2015).

Giggenbach, W. F. The composition of gases in geothermal and volcanic systems as a function of tectonic setting. Proc. Int. Symp. Water Rock Interact. WRI-8, 873–878 (1992).

Marty, B. & Zimmermann, L. Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: Assessment of shallow-level fractionation and characterization of source composition. Geochim. Cosmochim. Acta 63, 3619–3633 (1999).

Umeda, K., Ogawa, Y., Asamori, K. & Oikawa, T. Aqueous fluids derived from a subducting slab: Observed high 3He emanation and conductive anomaly in a non-volcanic region, Kii Peninsula southwest Japan. J. Volcanol. Geotherm. Res. 149, 47–61 (2006).

Lee, H. et al. Nitrogen recycling at the Costa Rican subduction zone: The role of incoming plate structure. Sci. Rep. 7, 13933 (2017b).

Lewicki, J. L. & Brantley, S. L. CO2 degassing along the San Andreas fault, Parkfield, California. Geophys. Res. Lett. 27, 5–8 (2000).

Lewicki, J. L. et al. Shallow soil CO2 flow along the San Andreas and Calaveras faults, California. J. Geophys. Res., 108 (2003).

Taran, Y. A. N2, Ar, and He as a tool for discriminating sources of volcanic fluids with application to Vulcano, Italy. Bull. Volcanol. 73, 395–408 (2011).

Fischer, T. P. et al. Subduction and recycling of nitrogen along the Central American margin. Science 297, 1154–1157 (2002).

Staudacher, T. & Allègre, C. J. Recycling of oceanic crust and sediments: The noble gas subduction barrier. Earth Planet. Sci. Lett. 89, 173–183 (1988).

Torgersen, T. Defining the role of magmatism in extensional tectonics: Helium 3 fluxes in extensional basins. J. Geophys. Res. 98, 16257–16269 (1993).

Gautheron, C. & Moreira, M. Helium signature of the subcontinental lithospheric mantle. Earth Planet. Sci. Lett. 199, 39–47 (2002).

Sano, Y. & Fischer, T. P. The analysis and interpretation of noble gases in modern hydrothermal systems. In The Noble Gases as Geochemical Tracers, edited by P. Burnard, 249–317, Springer, Berlin (2013).

Burnard, P. et al. Constraints on fluid origins and migration velocities along the Marmara Main Fault (Sea of Marmara, Turkey) using helium isotopes. Earth Planet. Sci. Lett. 341, 68–78 (2012).

Klemperer, S. L. et al. Mantle fluids in the Karakoram fault: Helium isotope evidence. Earth Planet. Sci. Lett. 366, 59–70 (2013).

Kim, S. W. et al. SHRIMP U–Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula. Lithos 262, 88–106 (2016).

Honda, M., Kurita, K., Hamano, Y. & Ozima, M. Experimental studies of He and Ar degassing during rock fracturing. Earth Planet. Sci. Lett. 59, 429–436 (1982).

Bauer, S. J., Gardner, W. P. & Lee, H. Release of radiogenic noble gases as a new signal of rock deformation. Geophys. Res. Lett. 43, 10–688 (2016).

Cheng, W. Measurement of rhizosphere respiration and organic matter decomposition using natural 13 C. Plant Soil 183, 263–268 (1996).

Hong, S. K. & Lee, Y. I. Contributions of soot to δ13C of organic matter in Cretaceous lacustrine deposits, Gyeongsang Basin, Korea: Implication for paleoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 371, 54–61 (2013).

Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

Zhang, J., Quay, P. D. & Wilbur, D. O. Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim. Cosmochim. Acta 59, 107–114 (1995).

Kaown, D. et al. Evaluating the responses of alluvial and bedrock aquifers to earthquakes (ML 5.1 and ML 5.8) using hydrological and environmental tracer data. Hydrogeol. J. 27, 2011–2025 (2019).

Kim, C. M., Han, R., Jeong, G. Y., Jeong, J. O. & Son, M. Internal structure and materials of the Yangsan fault, Bogyeongsa area, Pohang, South Korea. Geosci. J. 20, 759–773 (2016).

Byerlee, J. D. Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology 21, 303–306 (1993).

Lee, D. H., Lee, J. M., Cho, H. M. & Kang, T. S. 3D crustal velocity structure beneath the broadband seismic array in the Gyeongju area of Korea by receiver function analyses. Tectonophy. 689, 89–106 (2016).

Uchide, T. & Song, S. G. Fault rupture model of the 2016 Gyeongju, South Korea, earthquake and its implication for the underground fault system. Geophys. Res. Lett. 45, 2257–2264 (2018).

Kim, H.C. & Lee, Y. Heat flow in the Republic of Korea. J. Geophys. Res. 112 (2007).

Wang, Z., Fukao, Y., Kodaira, S. & Huang, R. Role of fluids in the initiation of the 2008 Iwate earthquake (M7. 2) in northeast Japan. Geophys. Res. Lett., 35 (2008).

Ballentine, C. J. & Burnard, P. G. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 47, 481–538 (2002).

Kim, S., Ree, J. H., Yoon, H. S., Choi, B. K. & Park, P. H. Crustal Deformation of South Korea After the Tohoku‐Oki Earthquake: Deformation Heterogeneity and Seismic Activity. Tectonics 37, 2389–2403 (2018).

Kurz, M. D., Warren, J. M. & Curtice, J. Mantle deformation and noble gases: Helium and neon in oceanic mylonites. Chem. Geol. 266, 10–18 (2009).

Recanati, A., Kurz, M. D., Warren, J. M. & Curtice, J. Helium distribution in a mantle shear zone from the Josephine Peridotite. Earth Planet. Sci. Lett., 162–172 (2012).

Matsuda, J. et al. The 3He/4He ratio of the new internal He Standard of Japan (HESJ). Geochem. J. 36, 191–195 (2002).

Craig, H., Clarke, W. B. & Beg, M. A. Excess 3He in deep water on the East Pacific Rise. Earth Planet. Sci. Lett. 26, 125–132 (1975).

Sano, Y., Takahata, N. & Seno, T. Geographical distribution of 3He/4He ratios in the Chugoku district, Southwestern Japan. Pure Appl. Geophys. 163, 745–757 (2006).

Ryan, W. B. F. et al. Global Multi-Resolution Topography synthesis. Geochem. Geophys. Geosyst. 10, Q03014, https://doi.org/10.1029/2008GC002332 (2009).