Manipulating angiogenesis in medicine

Journal of Internal Medicine - Tập 255 Số 5 - Trang 538-561 - 2004
Peter Carmeliet1
1From the Center for Transgene Technology and Gene Therapy, Flanders Interuniversitary Institute for Biotechnology, KULeuven, Campus Gasthuisberg, Leuven, Belgium

Tóm tắt

Abstract.Blood vessels nourish organs with vital nutrients and oxygen and, thus, new vessels form when the embryo needs to grow or wounds are to heal. However, forming new blood vessels is a complex and delicate process, which, unfortunately, is often derailed. Thus, when insufficient vessels form, the tissue becomes ischaemic and stops to function adequately. Conversely, when vessels grow excessively, malignant and inflamed tissues grow faster. It is now becoming increasingly evident that abnormal vessel growth contributes to the pathogenesis of numerous malignant, ischaemic, inflammatory, infectious and immune disorders. With an in‐depth molecular understanding, we should be better armamented to combat such angiogenic disorders in the future. That such therapeutic strategies might change the face of medicine is witnessed by initial evidence of success in the clinic.

Từ khóa


Tài liệu tham khảo

10.1016/S0093-7754(01)90021-1

10.1038/nrc905

10.1038/35025220

10.1038/nm0603-653

10.1152/ajpendo.00516.2001

10.1073/pnas.162349799

10.1093/emboj/18.2.363

Harada K, 2000, Angiogenesis and vasodilation in skin warts. Association with HPV infection, Anticancer Res, 20, 4519

Maynard SE, 2004, Excess Placental sFlt‐1 may contribute to endothelial dysfunction, hypertension and proteinuria in preeclampsia, J Clin Invest, 649

10.1046/j.1523-1747.2002.01714.x

10.1053/ajkd.2001.22087

10.1007/s001980200120

10.1161/01.CIR.0000050652.47145.4C

10.1016/S0008-6363(00)00228-5

10.1161/01.CIR.0000039526.42991.93

10.1161/01.CIR.96.8.2667

Boudier HA., 1999, Arteriolar and capillary remodelling in hypertension, Drugs, 58, 37

10.1164/rccm.2103112

10.1172/JCI10259

10.1161/01.STR.25.9.1794

10.1038/88842

De La Torre JC., 2002, Alzheimer's disease: how does it start, J Alzheimers Dis, 4, 497, 10.3233/JAD-2002-4606

10.1023/A:1016469217449

10.1089/152581602753448568

10.2174/1566524023362195

10.1089/152581602753448504

10.1242/dev.122.5.1363

10.1093/emboj/19.11.2465

10.1016/S1074-7613(02)00313-8

10.1016/S0092-8674(00)00025-8

10.1182/blood.V95.5.1671.005k39_1671_1679

10.1093/emboj/17.14.4029

10.1101/gad.12.5.621

10.1038/376062a0

10.1242/dev.125.9.1747

10.1242/dev.00149

10.1101/gad.1049803

10.1038/380435a0

10.1038/380439a0

10.1038/376066a0

10.1242/dev.126.13.3015

10.1182/blood.V99.7.2397

10.1101/gad.12.4.473

10.1073/pnas.92.21.9565

10.1242/dev.128.10.1717

10.1002/1097-0177(2000)9999:9999<::AID-DVDY1087>3.0.CO;2-2

Vokes SA, 2002, Endoderm is required for vascular endothelial tube formation, but not for angioblast specification, Development, 129, 775, 10.1242/dev.129.3.775

10.1126/science.275.5302.964

10.1182/blood.V95.3.952.003k27_952_958

10.1172/JCI8071

10.1038/87904

10.1038/nm871

10.1038/35070587

10.1038/nm1101-1194

10.1161/01.RES.88.2.167

10.1038/7434

10.1161/hh1301.093953

10.1161/hc2301.092122

10.1056/NEJMoa022287

10.1161/01.CIR.0000055313.77510.22

10.1161/hc0602.103673

10.1084/jem.193.9.1005

10.1093/emboj/18.14.3964

10.1161/01.CIR.0000058702.69484.A0

Carmeliet P, 2001, The emerging role of the bone marrow‐derived stem cells in (therapeutic) angiogenesis, Thromb Haemost, 86, 289, 10.1055/s-0037-1616226

10.1242/dev.129.11.2773

10.1172/JCI0214327

10.1046/j.1432-0436.2001.680406.x

10.1038/74651

10.1161/01.ATV.19.7.1589

10.1002/(SICI)1097-0177(199707)209:3<296::AID-AJA5>3.0.CO;2-D

10.1146/annurev.physiol.60.1.267

Landerholm TE, 1999, A role for serum response factor in coronary smooth muscle differentiation from proepicardial cells, Development, 126, 2053, 10.1242/dev.126.10.2053

10.1006/dbio.1997.8801

10.1242/dev.126.14.3047

10.1083/jcb.141.3.805

10.1038/35040568

10.1182/blood-2002-06-1877

10.1016/S0008-6363(97)00146-6

10.1038/86394

10.1172/JCI10233

10.1038/89121

10.1161/01.CIR.0000031525.61826.A8

10.1073/pnas.0730743100

10.1097/00007890-200211150-00019

10.1038/nm0402-403

10.1038/nm0302-194

10.1016/S0002-9440(10)64663-9

10.1161/01.RES.0000021432.70309.28

10.1146/annurev.immunol.18.1.813

10.1046/j.1440-1681.2000.03343.x

10.1161/01.RES.82.2.195

10.1242/dev.127.21.4531

Derhaag JG, 1996, Production and characterization of spontaneous rat heart endothelial cell lines, Lab Invest, 74, 437

10.3109/10623329709052595

10.1002/jez.1402590210

10.1242/dev.129.4.973

10.1242/dev.127.20.4303

10.1016/S0925-4773(99)00256-7

10.1038/44304

10.1016/S1050-1738(01)00140-2

10.1038/72212

10.1126/science.282.5388.468

10.1073/pnas.122109599

10.1038/35091000

10.1242/dev.128.11.2085

10.1046/j.1471-4159.85.s2.2_2.x

10.1038/nm0902-913

10.1038/nrc724

10.1038/35102599

10.1016/S0925-4773(97)00671-0

10.1006/dbio.1996.8495

10.1006/dbio.2002.0794

Damert A, 2002, Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation, Development, 129, 1881, 10.1242/dev.129.8.1881

10.1046/j.1432-0436.2001.680405.x

Moyon D, 2001, Plasticity of endothelial cells during arterial–venous differentiation in the avian embryo, Development, 128, 3359, 10.1242/dev.128.17.3359

10.1006/dbio.2001.0383

10.1016/S1534-5807(02)00198-3

10.1038/nrg888

10.1242/dev.123.1.293

10.1016/S0092-8674(02)00757-2

10.1172/JCI0214362

10.1242/dev.128.19.3675

10.1126/science.287.5459.1820

10.1101/gad.1072203

10.1111/j.1750-3639.2002.tb00451.x

10.1161/01.ATV.0000060892.81529.8F

10.1006/mvre.2002.2443

10.1006/dbio.2000.9995

10.1038/nm0603-677

10.1038/8379

10.1097/01.ASN.0000013925.19218.7B

10.1242/dev.126.6.1149

10.1016/S0008-6363(00)00282-0

10.1002/dvdy.10119

10.1101/gad.13.3.295

10.1242/dev.127.2.269

10.1101/gad.242002

10.1038/nm819

10.1083/jcb.200302047

10.1161/01.RES.87.3.176

Hilgers KF, 1997, Angiotensin's role in renal development, Semin Nephrol, 17, 492

10.1083/jcb.146.1.233

10.1074/jbc.M006922200

10.1016/S0092-8674(00)81436-1

10.1016/S1097-2765(00)80342-1

10.1182/blood.V98.4.1028

10.1006/dbio.2000.0112

10.1006/dbio.2000.9957

10.1016/S1097-2765(01)00171-X

10.1016/S0008-6363(99)00186-8

Emanuel BS, 2001, The 22q11.2 deletion syndrome, Adv Pediatr, 48, 39, 10.1016/S0065-3101(23)00073-7

10.1038/35098574

10.1242/dev.125.19.3905

10.1016/S0925-4773(01)00468-3

10.1002/1097-0061(200012)17:4<294::AID-YEA54>3.0.CO;2-5

10.1016/S0925-4773(01)00601-3

10.1242/dev.127.7.1445

10.1172/JCI17423

10.1172/JCI18015

10.1038/labinvest.3780013

10.1161/01.CIR.102.8.898

10.1093/emboj/21.8.1939

10.1126/science.286.5449.2511

10.1172/JCI5028

10.1200/JCO.2002.10.088

10.1038/nrc909

10.1097/00001622-200211000-00010

10.1038/scientificamerican1201-38

10.1016/S1535-6108(02)00208-8

10.1073/pnas.90.22.10705

10.1073/pnas.92.23.10457

10.1038/362841a0

Presta LG, 1997, Humanization of an anti‐vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders, Cancer Res, 57, 4593

Lee CG, 2000, Anti‐vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions, Cancer Res, 60, 5565

Prewett M, 1999, Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors, Cancer Res, 59, 5209

Strawn LM, 1996, Flk‐1 as a target for tumor growth inhibition, Cancer Res, 56, 3540

10.1073/pnas.191117498

Fong TA, 1999, SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk‐1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types, Cancer Res, 59, 99

10.1016/S0021-9258(18)47298-5

10.1038/nm884

10.1038/nm731

10.1002/jcp.1121

Green CJ, 2001, Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor‐1, Cancer Res, 61, 2696

10.1182/blood.V97.3.785

10.1023/A:1013329832067

10.1038/nm0902-918

10.1038/nrc727

10.1055/s-0037-1616232

10.1097/00041552-200205000-00005

10.1007/s11883-000-0079-z

10.1038/sj.onc.1205745

10.1016/S0014-5793(99)00897-2

10.1159/000064027

10.1182/blood-2002-01-0185

10.1038/35036374

10.1096/fj.01-0552com

10.1096/fsb2fj000393com

10.1038/nm0898-923

10.1038/13459

10.1083/jcb.152.4.777

Itoh T, 1998, Reduced angiogenesis and tumor progression in gelatinase A‐deficient mice, Cancer Res, 58, 1048

10.1096/fj.01-0790com

10.1016/S0002-9440(10)64418-5

10.1016/S0002-9440(10)64363-5

10.1038/nm0102-27

10.1038/35040684

10.1083/jcb.153.3.543

10.1038/nbt1101-1029

10.1161/hc0102.101437

10.1046/j.1524-4725.2001.00227.x

10.1096/fj.02-0319com

10.1038/sj.onc.1206223

10.1161/01.CIR.98.19.2081

10.1161/01.ATV.20.12.2573

10.1006/excr.2002.5597

Ahmad SA, 2001, The effects of angiopoietin‐1 and ‐2 on tumor growth and angiogenesis in human colon cancer, Cancer Res, 61, 1255

10.1038/sj.bjc.6600082

10.1161/01.RES.87.7.603

10.1038/74725

10.1074/jbc.M103661200

10.1074/jbc.M100282200

10.1016/S0002-9440(10)64899-7

10.1161/hh1401.094281

10.1172/JCI0215621

10.1016/S1050-1738(01)00149-9

Etoh T, 2001, Angiopoietin‐2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases, Cancer Res, 61, 2145

10.1016/S1534-5807(02)00217-4

10.1126/science.277.5322.55

10.1002/jcp.10128

10.1016/S0092-8674(00)81814-0

10.1167/iovs.02-0276

10.1182/blood.V100.13.4495

10.1002/jcp.10170

10.1073/pnas.97.6.2626

10.1093/emboj/21.7.1743

10.1074/jbc.M104536200

10.1074/jbc.275.22.16709

10.1136/pmj.79.927.18

10.1093/hmg/ddg050

10.1183/09031936.02.02702002

10.1038/79226

10.1056/NEJMoa021650

10.1097/00003246-200205001-00013

10.1161/01.RES.88.1.e2

10.1016/S0022-1759(02)00420-9

10.1002/jlb.66.6.889

10.1016/S0022-4804(02)00020-3

10.1634/stemcells.19-4-304

10.1089/152581602753448540

10.1161/01.CIR.0000054623.35669.3F

10.1161/01.CIR.0000016821.76177.D2

Carbone JE, 2002, Immune dysfunction in cancer patients, Oncology (Huntingt), 16, 11

10.1038/nm0996-992

10.1054/drup.2001.0219

10.1159/000065305

10.1055/s-2002-20563

10.1126/science.1064981

10.1097/00062752-200209000-00003

Ollivier V, 1998, Tissue factor‐dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII, Blood, 91, 2698, 10.1182/blood.V91.8.2698.2698_2698_2703

10.1073/pnas.96.15.8663

10.1172/JCI117451

10.1007/BF02981930

10.1038/nrc704

10.1101/gad.914801

10.1161/01.CIR.102.18.2255

10.1073/pnas.162119399

10.1038/71527

10.1074/jbc.C200328200

Volm M, 2000, Hypoxia‐inducible factor (HIF‐1) and its relationship to apoptosis and proliferation in lung cancer, Anticancer Res, 20, 1527

10.2169/internalmedicine.41.79

10.1007/s00109-002-0355-1

10.1016/0092-8674(94)90200-3

10.1016/S0092-8674(00)81848-6

10.1073/pnas.090065597

10.1073/pnas.95.11.6367

10.2174/1381612033391342

10.1016/S0002-9440(10)65140-1

10.1073/pnas.96.8.4449

10.1016/S0002-9440(10)62512-6

10.1126/science.284.5422.1994

Tanaka S, 2003, Angiogenic switch as a molecular target of malignant tumors, J Gastroenterol, 38, 93

10.1002/ijc.10336

10.1016/S1471-4914(02)02367-5

10.1038/sj.mn.7800173

10.1161/01.ATV.0000039168.95670.B9

10.1152/ajpheart.01098.2001

Royen N, 2002, Exogenous application of transforming growth factor beta 1 stimulates arteriogenesis in the peripheral circulation, Faseb J, 16, 432, 10.1096/fj.01-0563fje

10.1016/S0021-9150(01)00637-2

10.1152/ajpheart.00506.2002

10.1161/01.CIR.0000014987.32865.8E

10.1161/01.RES.0000057997.77714.72

10.1038/nm848

10.1038/415234a