Superoxide dismutase mangane: ảnh hưởng của đa hình ala16val đến protein, hoạt động và mức độ mRNA trong các dòng tế bào ung thư vú người và các tế bào nguyên bào sợi phôi chuột đã chuyển gen ổn định

Molecular and Cellular Biochemistry - Tập 335 - Trang 107-118 - 2009
Britt L. McAtee1, James D. Yager1
1Division of Toxicology, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA

Tóm tắt

Đa hình ala16val của mangan superoxide dismutase (MnSOD) đã liên quan đến nhiều bệnh, bao gồm ung thư vú. Trong nghiên cứu này, chúng tôi đã xác định mức độ protein MnSOD, hoạt động enzym và mRNA liên quan đến kiểu gen MnSOD trong một số dòng tế bào carcinoma vú người và trong các nguyên bào sợi phôi chuột (MEF), được phát triển từ chuột knockout MnSOD, biểu hiện ổn định MnSOD-ala và MnSOD-val của người. Trong các dòng tế bào vú người, allele MnSOD-ala có mối liên hệ với mức độ protein MnSOD cao hơn và protein MnSOD trên mỗi đơn vị mRNA. Ở các biến thể MEF, hoạt độ MnSOD tương quan khá tốt với mức protein MnSOD. Biểu hiện mRNA MnSOD thấp hơn đáng kể ở dòng MnSOD-ala so với dòng MnSOD-val. Mức protein và hoạt động của MnSOD không liên quan đến kiểu gen MnSOD trong MEF biến đổi, mặc dù, như đã quan sát thấy ở các dòng tế bào vú người, các dòng MEF MnSOD-ala của người đã sản xuất nhiều hơn đáng kể protein MnSOD của người trên mỗi đơn vị mRNA so với các dòng MnSOD-val của người. Điều này cho thấy rằng việc sản xuất protein MnSOD-ala hiệu quả hơn so với protein MnSOD-val. Kiểm tra một số chỉ số về mức độ loài oxy phản ứng, bao gồm superoxide và hydrogen peroxide, trong MEF loại hoang dã và trong MEF biểu hiện các hoạt động MnSOD-ala hoặc val tương tự không cho thấy sự khác biệt liên quan đến mức độ biểu hiện protein MnSOD. Kết luận, trong cả hai dòng tế bào carcinoma vú người và dòng MEF đã chuyển gen ổn định với MnSOD của người, allele MnSOD-ala có liên quan đến việc sản xuất protein MnSOD tăng hơn trên mỗi đơn vị mRNA cho thấy một sự mất cân bằng có thể trong sản xuất protein MnSOD từ mRNA MnSOD-val.

Từ khóa

#manganese superoxide dismutase #MnSOD #ala16val polymorphism #ung thư vú #hoạt động enzym

Tài liệu tham khảo

Montano M et al (2009) Association between manganese superoxide dismutase (MnSOD) gene polymorphism and elderly obesity. Mol Cell Biochem 328(1–2):33–40 Ambrosone CB et al (1999) Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 59(3):602–606 Mitrunen K et al (2001) Association between manganese superoxide dismutase (MnSOD) gene polymorphism and breast cancer risk. Carcinogenesis 22(5):827–829 Kocabas NA et al (2005) Genetic polymorphism of manganese superoxide dismutase (MnSOD) and breast cancer susceptibility. Cell Biochem Funct 23(1):73–76 Mollsten A et al (2007) A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy. Diabetes 56:265–269 Kang D et al (2007) Functional variant of manganese superoxide dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer study. Cancer Epidemiol Biomarkers Prev 16(8):1581–1586 Ezzikouri S et al (2008) Genetic polymorphims in the manganese superoxide dismutase gene is associated with an increased risk for hepatocellular carcinoma in HCV-infected Moroccan patients. Mutat Res 649(1–2):1–6 Zejnilovic J et al (2009) Association between manganese superoxide dismutase polymorphism and risk of lung cancer. Cancer Genet Cytogenet 189(1):1–4 Liu L et al (2009) The manganese superoxide dismutase Val16Ala polymorphism is associated with decreased risk of diabetic nephropathy in Chinese patients with type 2 diabetes. Mol Cell Biochem 322(1–2):87–91 Bica C et al (2009) MnSOD gene polymorphism association with steroid-dependent cancer. Pathol Oncol Res 15(1):19–24 Shimoda-Matsubayashi S et al (1996) Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. Biochem Biophys Res Commun 226:561–565 Hiroi S et al (1999) Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem Biophys Res Commun 261(2):332–339 Sutton A et al (2003) The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics 13:145–157 Sutton A et al (2005) The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet Genomics 15(5):311–319 Kinnula VL et al (2004) Ultrastructural and chromosomal studies on manganese superoxide dismutase in malignant mesothelioma. Am J Respir Cell Mol Biol 31(2):147–153 Elsakka NE, Webster NR, Galley HF (2007) Polymorphism in the manganese superoxide dismutase gene. Free Radic Res 41(7):770–778 Melov S et al (1999) Mitochondrial disease in superoxide 2 mutant mice. Proc Natl Acad Sci USA 96:846–851 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 Flohe L, Otting F (1984) Methods in enzymology. In: Packer L (ed) Oxygen radicals in biological systems. Academic Press, New York, pp 93–104 MacMillan-Crow L et al (1996) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. PNAS 93(21):11853–11858 Hanson B et al (2001) Cytochrome c oxidase-deficient patients have distinct subunity assembly profiles. J Biol Chem 276(19):16296–16301 Bastaki M et al (2006) Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet Genomics 16:279–286 Vina J et al (2006) Part of the series: from dietary antioxidants to regulators in cellular signaling and gene expression role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress. Free Radic Res 40(2):111–119 Rochefort H et al (2003) How to target estrogen receptor-negative breast cancer? Endocr Relat Cancer 10(2):261–266 Boyan BD et al (2003) Estrogen-dependent rapid activation of protein kinase C in estrogen receptor-positive MCF-7 breast cancer cells and estrogen receptor-negative HCC38 cells is membrane-mediated and inhibited by tamoxifen. Endocrinology 144(5):1812–1824 Shyu R et al (2005) Expression and regulation of retinoid-inducible gene 1 (RIG1) in breast cancer. Anticancer Res 25(3c):2453–2460 Greene G, Press M (1986) Structure and dynamics of the estrogen receptor. J Steroid Biochem 24(1):1–7 Rochefort H et al (1984) Steroidal and nonsteroidal antiestrogens in breast cancer cells in culture. J Steroid Biochem 20(1):105–110 Mobley JA, Brueggemeier RW (2004) Estrogen receptor-mediated regulation of oxidative stress and DNA damage in breast cancer. Carcinogenesis 25(1):3–9 Wright G et al (2001) Oxidative stress inhibits the mitochondrial import of preproteins and leads to their degradation. Exp Cell Res 263(1):107–117 Zhang HJ et al (1999) Comparison of effects of two polymorphic variants of manganese superoxide dismutase on human breast MCF-7 cancer cell phenotype. Cancer Res 59(24):6276–6283 Li N, Zhai Y, Oberley TD (1999) Two distinct mechanisms for inhibition of cell growth in human prostate carcinoma cells with antioxidant enzyme imbalance. Free Radic Biol Med 26(11–12):1554–1568 Li N et al (1998) Overexpression of manganese superoxide dismutase in DU145 human prostate carcinoma cells has multiple effects on cell phenotype. Prostate 35(3):221–233 Li N et al (1998) Inhibition of cell growth in NIH/3T3 fibroblasts by overexpression of manganese superoxide dismutase: mechanistic studies. J Cell Physiol 175(3):359–369 Kelner M, Bagnell R (1990) Alteration of endogenous glutathione peroxidase, manganese superoxide dismutase, and glutathione transferase activity in cells transfected with a copper-zinc superoxide dismutase expression vector. Explanation for variations in paraquat resistance. J Biol Chem 265(19):10872–10875 Kelner MJ et al (1995) Transfection with human copper-zinc superoxide dismutase induces bidirectional alterations in other antioxidant enzymes, proteins, growth factor response, and paraquat resistance. Free Radic Biol Med 18(3):497–506 Melendez JA et al (1999) Nitric oxide enhances the manganese superoxide dismutase-dependent suppression of proliferation in HT-1080 fibrosarcoma cells. Cell Growth Differ 10(9):655–664 Hu H et al (2007) Up-regulated manganese superoxide dismutase expression increases apoptosis resistance in human esophogeal squamous cell carcinomas. Chin Med J 120(23):2092–2098 Malafa M et al (2000) MnSOD expression is increased in metastatic gastric cancer. J Surg Res 88(2):130–134 Markland S et al (1982) Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalse and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res 42:1955–1961 Schadendorf D et al (1995) Serum manganese superoxide dismutase is a new tumour marker for malignant melanoma. Melanoma Res 5:351–353 Tsanou E et al (2004) Immunohistochemical expression of superoxide dismutase (MnSOD) anti-oxidant enzyme in invasive breast carcinoma. Histol Histopathol 19(3):807–813 Nozoe T et al (2003) Significance of immunohistochemical expression of manganese superoxide dismutase as a marker of malignant potential in colorectal carcinoma. Oncol Rep 10(1):39–43 Mohr A et al (2008) MnSOD protects colorectal cancer cells from TRAIL-induced apoptosis by inhibition of Smac/DIABLO release. Oncogene 27:763–774 Wenk J et al (1999) Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix adenocarcinoma cells. Clin Cancer Res 5:119–127 Zhang HJ et al (2002) Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J Biol Chem 277(23):20919–20926 Takada Y et al (2002) Role of reactive oxygen species in cells overexpressing manganese superoxide dismutase: mechanism for induction of radioresistance. Mol Cancer Res 1(2):137–146 Connor KM et al (2005) Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem 280(17):16916–16924 Xu Y et al (2008) Mutations in the SOD2 promoter reveal a molecular basis for an activating protein 2-dependent dysregulation of manganese superoxide dismutase expression in cancer cells. Mol Cancer Res 6(12):1881–1893 Nakano T, Oka K, Taniguchi N (1996) Manganese superoxide dismutase expression correlates with p53 status and local recurrence of cervical carcinoma treated with radiation therapy. Cancer Res 56:2771–2775 Zhao Y, Chaiswing L, Velez J (2005) p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res 65:3745–3750 Behrend L et al (2005) Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol 25(17):7758–7769 Pani G, Colavitti R, Bedogni B (2004) Mitochondrial superoxide dismutase: a promising target for new anticancer therapies. Curr Med Chem 11:1299–1308 Kiningham KK et al (1999) Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly(ADP-ribose) polymerase-mediated cell death. FASEB J 13(12):1601–1610 Cai Q et al (2004) Genetic polymorphism in the manganese superoxide dismutase gene, antioxidant intake, and breast cancer risk: results from the Shanghai Breast Cancer Study. Breast Cancer Res 6(6):R647–R655