Management of oxidative stress and other pathologies in Alzheimer’s disease
Tóm tắt
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder, characterized by the formation, aggregation and accumulation of amyloid beta, perturbed metal (copper, iron and zinc) homeostasis, metal-induced oxidative stress, neuroinflammation, aberrant activity of acetylcholinesterase (AChE) and other pathologies. The aim of this review is to discuss the current therapies based on the “combination-drugs-multitargets” strategy to target multiple pathologies to block the progression of pathogenesis of AD. In addition to cholinergic and amyloid targets, a significant effort is focused on targeting the metal-induced oxidative stress component of the disease. The main focus of research is based on modifications of existing drugs with specific biological activity. Tacrine was the first AChE inhibitor to be introduced into clinical practice and has been frequently used for the design of multitarget-directed ligands. A number of hybrid compounds containing tacrine and structural moieties derived from natural sources such as flavonoids [quercetin, rutin, coumarin, gallamine, resveratrol, scutellarin, anisidine, hesperetin, (−)-epicatechin] and other molecules (melatonin, trolox) have also been applied to function as multitarget-directed ligands. Most of these hybrids are potent inhibitors of AChE and butyrylcholinesterase and also of amyloid-beta aggregation. In addition, the antioxidant functionality, represented by coumarins, melatonin and other antioxidant molecules reduces the level of oxidative stress via ROS-scavenging mechanisms, as well as via chelation of redox-active Cu and Fe, thus suppressing the formation of ROS via the Fenton reaction. Various medicinal plants are under investigation for their ability to ameliorate symptoms of AD. The therapeutic potency of huperzine A and B, ginseng, curcumin and other compounds is manifested predominantly by the inhibitory action toward AChE, antioxidant or radical-scavenging and redox metal-chelating activity, inhibition of amyloid-beta aggregation and tau-protein hyperphosphorylation and antiinflammatory activity. Flavonoids not only function as antioxidants and metal-chelating agents, but also interact with protein kinase and lipid kinase signaling pathways, and others involving mitogen-activated protein kinase, NF-kappaB and tyrosine kinase. Among the most promising group of substances with potential activity against AD are the flavonoids, including myricetin, morin, rutin, quercetin, fisetin, kaempferol, apigenin and glycitein, which have been shown, in vitro, to possess antiamyloidogenic and fibril-destabilization activity, as well as being able to act as metal chelators and to suppressing oxidative stress. In terms of the clinical use of multifunctional hybrids, herbal drugs or flavonoids against AD, some remaining challenges are to establish the ideal dose to develop effective formulations to preserve bioavailability and to determine the stage when they should be administered. If the onset of the disease could be delayed by a decade, the number of AD victims would be significantly reduced.
Tài liệu tham khảo
Airoldi C, La Ferla B, D’Orazio G, Ciaramelli C, Palmioli A (2018) Flavonoids in the treatment of Alzheimer’s and other neurodegenerative diseases. Curr Med Chem 25(27):3228–3246. https://doi.org/10.2174/0929867325666180209132125
Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M (2003) Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomised, placebo controlled trial. J Neurol Neurosurg Psychiatry 74(7):863–866. https://doi.org/10.1136/jnnp.74.7.863
Ali FE, Separovic F, Barrow CJ, Cherny RA, Fraser F, Bush AI, Masters CL, Barnham KJ (2005) Methionine regulates copper/hydrogen peroxide oxidation products of Abeta. J Pept Sci 11:353–360. https://doi.org/10.1002/psc.626
Atwood CS, Moir RD, Huang XD et al (1998) Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 273:12817–12826. https://doi.org/10.1074/jbc.273.21.12817
Augustin MA, Sanguansri L, Lockett T (2013) Nano- and micro-encapsulated systems for enhancing the delivery of resveratrol. Ann N Y Acad Sci 1290:107–112. https://doi.org/10.1111/nyas.12130
Awad R, Muhammad A, Durst T et al (2009) Bioassay-guided fractionation of Lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytother Res 23:1075–1081. https://doi.org/10.1002/ptr.2712
Awasthi M, Singh S, Pandey VP, Dwivedi UN (2016) Alzheimer’s disease: an overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J Neurol Sci 361:256–271. https://doi.org/10.1016/j.jns.2016.01.008
Azzi A, Gysin R, Kempna P, Ricciarelli R, Villacorta L, Visarius T, Zingg JM (2003) The role of a-tocopherol in preventing disease: from epidemiology to molecular events. Mol Asp Med 24:325–336. https://doi.org/10.1016/S0098-2997(03)00028-1
Baptista FI, Henriques AG, Silva AM, Wiltfang J, da Cruz e Silva OA (2014) Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chem Neurosci 5(2):83–92. https://doi.org/10.1021/cn400213r
Barnham KJ, Haeffner F, Ciccotosto GD et al (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease beta-amyloid. FASEB J 18:1427–1429. https://doi.org/10.1096/fj.04-1890fje
Bhullar KS, Rupasinghe HP (2013) Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid Med Cell Longev 2013:891748. https://doi.org/10.1155/2013/891748
Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A et al (2007) Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol 5(1):3. https://doi.org/10.1186/1477-3155-5-3
Block ML, Calderon-Garciduenas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32:506–516. https://doi.org/10.1016/j.tins.2009.05.009
Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259
Braidy N, Jugder BE, Poljak A, Jayasena T, Nabavi SM, Sachdev P, Grant R (2017) Molecular targets of tannic acid in Alzheimer’s disease. Curr Alzheimer Res 14(8):861–869. https://doi.org/10.2174/1567205014666170206163158
Bush AI (2003) The metallobiology of Alzheimerˈs disease. Trends Neurosci 26:207–214. https://doi.org/10.1016/S0166-2236(03)00067-5
Bush AI, Curtain CC (2008) Twenty years of metallo-neurobiology: where to now? Eur Biophys J Biophys Lett 37:241–245. https://doi.org/10.1007/s00249-007-0228-1
Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160. https://doi.org/10.1038/s41583-019-0132-6
Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P, Marambaud P (2012) Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 120(3):461–472. https://doi.org/10.1111/j.1471-4159.2011.07594.x
Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M et al (2013) Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol 61:215–226. https://doi.org/10.1016/j.fct.2013.07.021
Cerpa WF, Barria MI, Chacon MA, Suazo M, Gonzalez M, Opazo C, Bush AI, Inestrosa NC (2004) The N-terminal copper-binding domain of the amyloid precursor protein protects against Cu2? Neurotoxicity in vivo. FASEB J 18:1701. https://doi.org/10.1096/fj.03-1349fje
Ceschi MA, da Costa JS, Lopes JPB, Câmara VS, Campo LF et al (2016) Novel series of tacrine–tianeptine hybrids: synthesis, cholinesterase inhibitory activity, S100B secretion and a molecular modeling approach. Eur J Med Chem 121:758–772. https://doi.org/10.1016/j.ejmech.2016.06.025
Chafekar SM, Hoozemans JJM, Zwart R et al (2007) Abeta (1–42) induces mild endoplasmic reticulum stress in an aggregation state-dependent manner. Antioxid Redox Signal 9:2245–2254. https://doi.org/10.1089/ars.2007.1797
Chen K, Kazachkov M, Yu PH (2007) Effect of aldehydes derived from oxidative deamination and oxidative stress on beta-amyloid aggregation; pathological implications to Alzheimer’s disease. J Neural Trans 114:835–839. https://doi.org/10.1007/s00702-007-0697-5
Chong CM, Zhou ZY, Naumovski VR, Cui GZ, Zhang LQ, Sa F, Hoi PM, Chan K, Lee SM (2013) Danshensu protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Neurosci Lett 543:121–125. https://doi.org/10.1186/s13020-019-0242-0
Ciccotosto GD, Tew D, Curtain CC et al (2004) Enhanced toxicity and cellular binding of a modified amyloid beta peptide with a methionine to valine substitution. J Biol Chem 279:42528–42534. https://doi.org/10.1074/jbc.M406465200
Coric B, Salloway S, van Dyck CH, Dubois B, Andreasen N, Brody M, Curtis C, Soininen H, Thein S, Shiovitz T, Pilcher G, Ferris S, Colby S, Kerselaers W, Dockens R, Soares H, Kaplita S, Luo F, Pachai C, Bracoud L, Mintun M, Grill JD, Marek K, Seibyl J, Cedarbaum JM, Albright C, Feldman HH, Berman RM (2015) Targeting prodromal alzheimer disease with avagacestat: a randomized clinical trial. JAMA Neurol 72:1324–1333. https://doi.org/10.1001/jamaneurol.2015.060
Cuajungco MP, Faget KY (2003) Zinc takes the center stage: its paradoxical role in Alzheimer’s disease. Brain Res Rev 41:44–56. https://doi.org/10.1016/S0165-0173(02)00219-9
Cuajungco MP, Lees GJ (1998) Nitric oxide generators produce accumulation of chelatable zinc in hippocampal neuronal perikarya. Brain Res 799:118–129. https://doi.org/10.1016/s0006-8993(98)00463-6
Cuajungco MP, Goldstein LE, Nunomura A et al (2000) Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of A beta by zinc. J Biol Chem 275:19439–19442. https://doi.org/10.1074/jbc.C000165200
de Andrade Teles RB, Diniz TC, Costa Pinto TC, de Oliveira Júnior RG, Gama E Silva M, de Lavor ÉM, Fernandes AWC, de Oliveira AP, de Almeida Ribeiro FPR, da Silva AAM, Cavalcante TCF, Quintans Júnior LJ, da Silva Almeida JRG (2018) Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: a systematic review of preclinical evidences. Oxid Med Cell Longev 2018:7043213. https://doi.org/10.1155/2018/7043213
Deibel MA, Ehmann WD, Markesbery WD (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142. https://doi.org/10.1016/S0022-510X(96)00203-1
Deshpande A, Kawai H, Metherate R, Glabe CG, Busciglio J (2009) A role for synaptic zinc in activity-dependent Abeta oligomer formation and accumulation at excitatory synapses. J Neurosci 29:4004–4015. https://doi.org/10.1523/JNEUROSCI.5980-08.2009
Devi L, Anandatheerthavarada HK (2010) Mitochondrial trafficking of APP and alpha synuclein: relevance to mitochondrial dysfunction in Alzheimer’s and Parkinsonˈs diseases. Biochim Biophys Acta 1802:11–19. https://doi.org/10.1016/j.bbadis.2009.07.007
Dikalov SI, Vitek MP, Mason RP (2004) Cupric-amyloid beta peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical. Free Radic Biol Med 36:340–347. https://doi.org/10.1016/j.freeradbiomed.2003.11.004
Dong J, Shokes JE, Scott RA, Lynn DG (2006) Modulating amyloid self-assembly and fibril morphology with Zn(II). J Am Chem Soc 128:3540–3542. https://doi.org/10.1021/ja055973j
Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, He F, Sun X, Thomas RG, Aisen PS, Siemers E, Sethuraman G, Mohs R (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369:341–350. https://doi.org/10.1056/NEJMoa1210951
Dragicevic N, Smith A, Lin X, Yuan F, Copes N, Delic V, Tan J, Cao C, Shytle RD, Bradshaw PC (2011) Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. J Alzheimers Dis 26(3):507–521. https://doi.org/10.3233/JAD-2011-101629
Elsinghorst PW, Cieslik JS, Mohr K, Tränkle C, Gütschow M (2007) First gallamine-tacrine hybrid: design and characterization at cholinesterases and the M2 muscarinic receptor. J Med Chem 50(23):5685–5695. https://doi.org/10.1021/jm070859s
Fang F, Chen X, Huang T, Lue LF, Luddy JS, Yan SS (2012) Multi-faced neuroprotective effects of ginsenoside Rg1 in an Alzheimer mouse model. Biochem Biophys Acta 1822:286–292. https://doi.org/10.3892/mmr.2016.5556
Garai K, Sahoo B, Kaushalya SK et al (2007) Zinc lowers amyloid-beta toxicity by selectively precipitating aggregation intermediates. Biochemistry 46:10655–10663. https://doi.org/10.1021/bi700798b
Gaudreault R, Mousseau N (2019) Mitigating Alzheimer’s disease by natural polyphenols: a review. Curr Alzheimer Res 16:529–543. https://doi.org/10.2174/1567205016666190315093520
Geula C, Darvesh S (2004) Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer’s disease. Drugs Today (Barc) 40:711–721. https://doi.org/10.1358/dot.2004.40.8.850473
Girek M, Szymanski P (2019) Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: influence of chemical structures on biological activities. Chem Pap 73:269–289. https://doi.org/10.1007/s11696-018-0590-8
Gomes BAQ, Silva JPB, Romeiro CFR, Dos Santos SM, Rodrigues CA, Gonçalves PR, Sakai JT, Mendes PFS, Varela ELP, Monteiro MC (2018) Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. Oxid Med Cell Longev 2018:8152373. https://doi.org/10.1155/2018/8152373
Gong L, Li SL, Li H, Zhang L (2011) Ginsenoside Rg1 protects primary cultured rat hippocampal neurons from cell apoptosis induced by β-amyloid protein. Pharm Biol 49:501–507. https://doi.org/10.3109/13880209.2010.521514
Haeffner F, Smith DG, Barnham KJ, Bush A (2005) Model studies of cholesterol and ascorbate oxidation by copper complexes: relevance to Alzheimer’s disease beta-amyloid metallochemistry. J Inorg Biochem 99:2403–2422. https://doi.org/10.1016/j.jinorgbio.2005.09.011
Halliwell B (2001) Role of free radicals in the neurodegenerative diseases—therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716. https://doi.org/10.2165/00002512-200118090-00004
Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford
Hamulakova S, Janovec L, Hrabinova M, Spilovska K, Korabecny J, Kristian P, Kuca K, Imrich J (2014) Synthesis and biological evaluation of novel tacrine derivatives and tacrine–coumarin hybrids as cholinesterase inhibitors. J Med Chem 2857(16):7073–7084. https://doi.org/10.1021/jm5008648
Hamulakova S, Poprac P, Jomova K, Brezova V, Lauro P, Drostinova L, Jun D, Sepsova V, Hrabinova M, Soukup O, Kristian P, Gazova Z, Bednarikova Z, Kuca K, Valko M (2016) Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer’s disease using multifunctional tacrine–coumarin hybrid molecules. J Inorg Biochem 161:52–62. https://doi.org/10.1016/j.jinorgbio.2016.05.001
Hardy J, Selkoe DJ (2002) Medicine—the amyloid hypothesis of Alzheimerˈs disease: progress and problems on the road to therapeutics. Science 297:353–356. https://doi.org/10.1126/science.1072994
Hatanaka H, Hanyu H, Fukasawa R, Hirao K, Shimizu S, Kanetaka H, Iwamoto T (2015) Differences in peripheral oxidative stress markers in Alzheimer’s disease, vascular dementia and mixed dementia patients. Geriatr Gerontol Int 15(1):53–58. https://doi.org/10.1111/ggi.12659
Herrup K (2015) The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18:794–799. https://doi.org/10.1038/nn.4017
Hiremathad A, Keri RS, Esteves AR, Cardoso SM, Chaves S, Santos MA (2018) Novel tacrine–hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease. Eur J Med Chem 148:255–267. https://doi.org/10.1016/j.ejmech.2018.02.023
Hu QI, Deng ZH (2011) Protective effects of flavonoids from corn silk on oxidative stress induced by exhaustive exercise in mice. Afr J Biotechnol 10:3163–3167. https://doi.org/10.5897/AJB10.2671
Huang XD, Cuajungco MP, Atwood CS et al (1999) Cu(II) potentiation of Alzheimer abeta neurotoxicity—correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274:37111–37116. https://doi.org/10.1074/jbc.274.52.37111
Huang TC, Lu KT, Wo YYP, Wu YJ, Yang YL (2011) Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 6:e29102. https://doi.org/10.1371/journal.pone.0029102
Huang XT, Qian ZM, He X, Gong Q, Wu KC, Jiang LR, Lu LN, Zhu ZJ, Zhang HY, Yung WH, Ke Y (2014) Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer’s disease. Neurobiol Aging 35:1045–1054. https://doi.org/10.1016/j.neurobiolaging.2013.11.004
Hung YH, Robb EL, Volitakis I et al (2009) Paradoxical condensation of copper with elevated beta-amyloid in lipid rafts under cellular copper deficiency conditions: implications for Alzheimer disease. J Biol Chem 284:21899–21907. https://doi.org/10.1074/jbc.M109.019521
Hung YH, Bush AI, Cherny RA (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15:61–76. https://doi.org/10.1007/s00775-009-0600-y
Impey S, Smith DM, Obrietan K, Donahue R, Wade C, Storm DR (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci 1:595–601. https://doi.org/10.1038/2830
Jalili-Baleh L, Babaei E, Abdpour S, Nasir Abbas Bukhari S, Foroumadi A, Ramazani A, Sharifzadeh M, Abdollahi M, Khoobi M (2018) A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease. Eur J Med Chem 152:570–589. https://doi.org/10.1016/j.ejmech.2018.05.004
Jerabek J, Uliassi E, Guidotti L, Korábečný J, Soukup O, Sepsova V, Hrabinova M, Kuča K, Bartolini M, Peña-Altamira LE, Petralla S, Monti B, Roberti M, Bolognesi ML (2017) Tacrine–resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur J Med Chem 127:250–262. https://doi.org/10.1016/j.ejmech.2016
Jomova K, Lawson M, Drostinova L, Lauro P, Poprac P, Brezova V, Michalik M, Lukes V, Valko M (2017) Protective role of quercetin against copper(II)-induced oxidative stress: a spectroscopic, theoretical and DNA damage study. Food Chem Toxicol 110:340–350. https://doi.org/10.1016/j.fct.2017.10.042
Joshi R, Reeta KH, Sharma SK, Tripathi M, Gupta YK, Ghrita Panchagavya (2015) An Ayurvedic formulation attenuates seizures, cognitive impairment and oxidative stress in pentylenetetrazole induced seizures in rats. Indian J Exp Biol 53(7):446–451
Kim HJ, Kim P, Shin CY (2013) A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 37:8–29. https://doi.org/10.5142/jgr.2013.37.8
Koch G, Di Lorenzo F, Bonnì S, Giacobbe V, Bozzali M, Caltagirone C, Martorana A (2014) Dopaminergic modulation of cortical plasticity in Alzheimer’s disease patients. Neuropsychopharmacology 39:2654–2661. https://doi.org/10.1038/npp.2014.119
Korabecny J, Andrs M, Nepovimova E, Dolezal R, Babkova K, Horova A, Malinak D, Mezeiova E, Gorecki L, Sepsova V, Hrabinova M, Soukup O, Jun D, Kuca K (2015) 7-Methoxytacrine-p-anisidine hybrids as novel dual binding site acetylcholinesterase inhibitors for Alzheimer’s disease treatment. Molecules 20(12):22084–22101. https://doi.org/10.3390/molecules201219836
Kuca K, Juna D, Musilek K (2006) Structural requirements of acetylcholinesterase reactivators. Mini Rev Med Chem 6(3):269–277. https://doi.org/10.2174/138955706776073510
Kumar A, Singh A, Ekavali KC (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203. https://doi.org/10.1016/j.pharep.2014.09.004
Kumar D, Ganeshpurkar A, Kumar D, Modi G, Gupta SK, Singh SK (2018) Secretase inhibitors for the treatment of Alzheimer’s disease: long road ahead. Eur J Med Chem 148:436–452. https://doi.org/10.1016/j.ejmech.2018.02.035
Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM et al (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6(1):10. https://doi.org/10.1186/1472-6882-6-10
Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, Shim I, Lee H, Hahm DH (2013) Ginsenoside rg3 alleviates lipopolysaccharide-induced learning and memory impairments by anti-inflammatory activity in rats. Biomol Ther (Seoul) 21(5):381–390. https://doi.org/10.4062/biomolther.2013.053
Lemkul JA, Bevan DR (2010) Destabilizing Alzheimer’s Aβ42 protofibrils with morin: mechanistic insights from molecular dynamics simulations. Biochemistry 49(18):3935–3946. https://doi.org/10.1021/bi1000855
Li P, Lapcik L (2018) The research of functional ingredients from corn silk. Chem Listy 112:93–97
Li Q, Zhao HF, Zhang ZF, Liu ZG, Pei XR, Wang JB, Li Y (2009) Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence accelerated mouse prone-8 mice by decreasing Abeta1–42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus. Neuroscience 163:741–749. https://doi.org/10.1016/j.neuroscience.2009.07.014
Li X, Deng Y, Zheng Z, Huang W, Chen L, Tong Q, Ming Y (2018) Corilagin, a promising medicinal herbal agent. Biomed Pharmacother 99:43–50. https://doi.org/10.1016/j.biopha.2018.01.030
Liu T, Jin H, Sun QR, Xu JH, Hu HT (2010) The neuroprotective effects of tanshinone IIA on β-amyloid-induced toxicity in rat cortical neurons. Neuropharmacology 59:595–604. https://doi.org/10.1016/j.neuropharm.2010.08.013
Liu X, Hao W, Qin Y, Decker Y, Wang X, Burkart M, Schotz K, Menger MD, Fassbender K, Liu Y (2015) Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer’s disease. Brain Behav Immun 46:121–123. https://doi.org/10.1016/j.bbi.2015.01.011
Lovejoy DB, Richardson D (2003) Iron chelators as anti-neoplastic agents: current developments and promise of the PIH class of chelators. Curr Med Chem 10:1035–1049. https://doi.org/10.2174/0929867033457557
Lu J, Song HP, Li P, Zhou P, Dong X, Chen J (2015) Screening of direct thrombin inhibitors from Radix Salviae miltiorrhizae by a peak fractionation approach. J Pharm Biomed 109:85–90. https://doi.org/10.1016/j.jpba.2015.02.020
Ma X, Wu L, Zhao H, Zeng D, Bai S (2014) Research progress of the Chinese medicine and herb prevention effect of the Alzheimer’s disease. Hunan Chin Tradit Med 11:177–179
MacLeod R, Hillert EK, Cameron RT, Baillie GS (2015) The role and therapeutic targeting of α, β- and γ-secretase in Alzheimer’s disease. Fut Sci OA 1(3):FSO11. https://doi.org/10.4155/fso.15.9
Maczurek A, Hagera K, Kenkliesa K et al (2008) Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer’s disease. Adv Drug Deliv Rev 60:1463–1470. https://doi.org/10.1016/j.addr.2008.04.015
Mandel SA, Amit T, Kalfon L, Reznichenko L, Weinreb O, Youdim MB (2008) Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG). J Alzheimer’s Dis 15(2):211–222
Maret W (2019) The redox biology of redox-inert zinc ions. Free Radic Biol Med 6(134):311–326. https://doi.org/10.1016/j.freeradbiomed.2019.01.006
Martorana A, Koch G (2014) Is dopamine involved in Alzheimier’s disease? Front Aging Neurosci 6:252. https://doi.org/10.3389/fnagi.2014.00252
Matés JM, Pérez-Gómez C, Nunez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32(8):595–603. https://doi.org/10.1016/S0009-9120(99)00075-2
Mehta M, Adem A, Sabbagh M (2012) New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimer Dis. https://doi.org/10.1155/2012/728983 (Art 728983)
Misik J, Korabecny J, Nepovimova E, Cabelova P, Kassa J (2015) The effects of novel 7-MEOTA-donepezil like hybrids and N-alkylated tacrine analogues in the treatment of quinuclidinyl benzilate-induced behavioural deficits in rats performing the multiple T-maze test. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159(4):547–553. https://doi.org/10.5507/bp.2015.006
Nepovimova E, Korabecny J, Dolezal R, Babkova K, Ondrejicek A, Jun D, Sepsova V, Horova A, Hrabinova M, Soukup O, Bukum N, Jost P, Muckova L, Kassa J, Malinak D, Andrs M, Kuca K (2015) Tacrine–trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J Med Chem 58(22):8985–9003. https://doi.org/10.1021/acs.jmedchem.5b01325
Ong WY, Halliwell B (2004) Iron, atherosclerosis, and neurodegeneration—a key role for cholesterol in promoting iron-dependent oxidative damage? Ann N Y Acad Sci 1012:51–64. https://doi.org/10.1196/annals.1306.005
Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M (2003) Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87:172–181. https://doi.org/10.1046/j.1471-4159.2003.01976.x
Orhan G, Orhan I, Oztekin-Subutay N, Ak F, Sener B (2009) Contemporary anticholinesterase pharmaceuticals of natural origin and their synthetic analogues for the treatment of Alzheimer’s disease. Recent Pat CNS Drug Discov 4(1):43–51. https://doi.org/10.2174/157488909787002582
Packer L, Witt EH, Tritschler HJ (1995) Alfa-lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227–250. https://doi.org/10.1016/0891-5849(95)00017-R
Packer L, Tritschler HJ, Wessel K (1997) Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 22:359–378. https://doi.org/10.1016/S0891-5849(96)00269-9
Pereira DM, Ferreres F, Oliveira JM, Gaspar L, Faria J, Valentão P et al (2010) Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine 17:646–652. https://doi.org/10.1016/j.phymed.2009.10.008
Perron NR, Garcia CR, Pizon JR, Chaur MN, Brumaghin JL (2011) Antioxidant and prooxidants effects of polyphenol compounds on copper mediated DNA damage. J Inorg Biochem 105:745–753. https://doi.org/10.1016/j.jinorgbio.2011.02.009
Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41:1261–1268. https://doi.org/10.1016/j.biocel.2008.12.015
Pogocki D (2003) Alzheimer’s beta-amyloid peptide as a source of neurotoxic free radicals: the role of structural effects. Acta Neurobiol Exp 63:131–145
Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38(7):592–607. https://doi.org/10.1016/j.tips.2017.04.005
Prati F, Cavalli A, Bolognesi ML (2016) Navigating the chemical space of multitarget-directed ligands: from hybrids to fragments in Alzheimer’s disease. Molecules 21:466. https://doi.org/10.3390/molecules21040466
Premkumar DR, Smith MA, Richey PL, Petersen RB, Castellani R, Kutty RK, Wiggert B, Perry G, Kalaria RN (1995) Induction of heme oxygenase-1 messenger-RNA and protein in neocortex and cerebral vessels in Alzheimer’s-disease. J Neurochem 65:1399–1402. https://doi.org/10.1046/j.1471-4159.1995.65031399.x
Rajendran R, Minqin R, Ynsa MD, Casadesus G, Smith MA, Perry G, Halliwell B, Watt F (2009) A novel approach to the identification and quantitative elemental analysis of amyloid deposits insights into the pathology of Alzheimer’s disease. Biochem Biophys Res Commun 382(1):91–95. https://doi.org/10.1016/j.bbrc.2009.02.136
Rege SD, Geetha T, Griffin GD, Broderick TL, Babu JR (2014) Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosc 6:218. https://doi.org/10.3389/fnagi.2014.00218
Reynolds MR, Berry RW, Binder LI (2005) Site-specific nitration differentially influences tau assembly in vitro. Biochemistry 44:13997–14009. https://doi.org/10.1021/bi051028w
Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, Shytle RD, Tan J (2008) Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 1214:177–187. https://doi.org/10.1016/j.brainres.2008.02.107
Rezai-Zadeh K, Shytle RD, Bai Y, Tian J, Hou H, Mori T, Zeng J, Obregon D, Town T, Tan J (2009) Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer’s disease β-amyloid production. J Cell Mol Med 13:574–588. https://doi.org/10.1111/j.1582-4934.2008.00344.x
Roberts BR, Ryan TM, Bush AI, Masters CL, Duce JA (2012) The role of metallobiology and amyloid-beta peptides in Alzheimer’s disease. J Neurochem 120(1):149–166. https://doi.org/10.1111/j.1471-4159.2011.07500.x
Rodríguez-Franco MI, Fernández-Bachiller MI, Pérez C, Hernández-Ledesma B, Bartolomé B (2006) Novel tacrine–melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J Med Chem 49(2):459–462. https://doi.org/10.1021/jm050746d
Romero A, Cacabelos R, Oset-Gasque MJ, Samadi A, Marco-Contelles J (2013) Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 23(7):1916–1922. https://doi.org/10.1016/j.bmcl.2013.02.017
Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A, Boga JA, Manchester LC, Fuentes-Broto L, Korkmaz A, Ma S, Tan DX, Reiter RJ (2012) Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 52(2):167–202. https://doi.org/10.1111/j.1600-079X.2011.00937.x
Ryglewicz D, Rodo M, Kunicki PK, Bednarska-Makaruk M et al (2002) Plasma antioxidant activity and vascular dementia. J Neurol Sci 203–204:195–197. https://doi.org/10.1159/000091710
Sadi G, Konat D (2016) Resveratrol regulates oxidative biomarkers and antioxidant enzymes in the brain of streptozotocin-induced diabetic rats. Pharm Biol 54(7):1–8. https://doi.org/10.3109/13880209.2015.1056311
Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738. https://doi.org/10.2174/0929867013372922
Schedin-Weiss S, Winblad B, Tjernberg LO (2014) The role of protein glycosylation in Alzheimer disease. FEBS J 281(1):46–62. https://doi.org/10.1111/febs.12590
Schroeter H, Bahia P, Spencer JP, Sheppard O, Rattray M, Cadenas E, Rice-Evans C, Williams RJ (2007) (−)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J Neurochem 101:1596–1606. https://doi.org/10.1111/j.1471-4159.2006.04434.x
Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766. https://doi.org/10.1152/physrev.2001.81.2.741
Shi Y, Zhang H, Wang W, Yan Fu, Xia Y, Tang X, Bai D, He X (2009) Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors. Acta Pharmacol Sin 30:1195–1203. https://doi.org/10.1038/aps.2009.91
Shi C, Liu J, Wu F, Yew DT (2010) Ginkgo biloba extract in Alzheimer’s disease: from action mechanisms to medical practice. Int J Mol Sci 11:107–123. https://doi.org/10.3390/ijms11010107
Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J (2017) Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr Neuropharmacol 15:1010–1031. https://doi.org/10.3390/ijms140714575
Singh N, Agrawal M, Dore S (2013) Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 4:1151–1162. https://doi.org/10.1021/cn400094w
Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM (2004) Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem 11:1135–1146. https://doi.org/10.2174/0929867043365387
Smith DP, Smith DG, Curtain CC et al (2006) Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge. J Biol Chem 281:15145–15154. https://doi.org/10.1074/jbc.M600417200
Spencer JP (2010) Beyond antioxidants: the cellular and molecular interactions of flavonoids and how these underpin their actions on the brain. Proc Nutr Soc 69:244–260. https://doi.org/10.1017/S0029665110000054
Spilovska K, Korabecny J, Kral J, Horova A, Musilek K, Soukup O, Drtinova L, Gazova Z, Siposova K, Kuca K (2013) 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment–synthesis, biological evaluation and molecular modeling studies. Molecules 18(2):2397–2418. https://doi.org/10.3390/molecules18022397
Spilovska K, Korabecny J, Sepsova V, Jun D, Hrabinova M, Jost P, Muckova L, Soukup O, Janockova J, Kucera T, Dolezal R, Mezeiova E, Kaping D, Kuca K (2017) Novel tacrine–scutellarin hybrids as multipotent anti-Alzheimer’s agents: design, synthesis and biological evaluation. Molecules. https://doi.org/10.3390/molecules22061006
Spuch C, Antequera D, Isabel Fernandez-Bachiller M, Isabel Rodríguez-Franco M, Carro E (2010) A new tacrine–melatonin hybrid reduces amyloid burden and behavioral deficits in a mouse model of Alzheimer’s disease. Neurotox Res 17(4):421–431. https://doi.org/10.1007/s12640-009-9121-2
Suh JH, Zhu BZ, De Szoeke E, Frei B, Hagen TM (2004) Dihydrolipoic acid lowers the redox activity of transition metal ions but does not remove them from the active site of enzymes. Redox Rep 9:57–61. https://doi.org/10.1179/135100004225003923
Sureda A, Xavier C, Tejada S (2017) Neuroprotective effects of flavonoid compounds on neuronal death associated to Alzheimer’s disease. Curr Med Chem. https://doi.org/10.2174/0929867325666171226103237
Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1:57–60. https://doi.org/10.1111/j.1749-6632.1994.tb21831.x
Tang M, Taghibiglou C (2017) The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimers Dis 58(4):1003–1016. https://doi.org/10.3233/JAD-170188
Tillement JP, Lecanu L, Papadopoulos V (2010) Amyloidosis and neurodegenerative diseases: current treatments and new pharmacological options. Pharmacology 85:1–17. https://doi.org/10.1159/000259044
Tumiatti V, Minarini A, Bolognesi ML, Milelli A, Rosini M, Melchiorre C (2010) Tacrine derivatives and Alzheimer’s disease. Curr Med Chem 17(17):1825–1838. https://doi.org/10.2174/092986710791111206
Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56. https://doi.org/10.1023/B:MCBI.0000049134.69131.89
Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208. https://doi.org/10.2174/0929867053764635
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40. https://doi.org/10.1016/j.cbi.2005.12.009
Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90(1):1–37. https://doi.org/10.1007/s00204-015-1579-5
Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208. https://doi.org/10.1006/jsbi.2000.4274
Vauzour D, Vafeiadou K, Rice-Evans C, Williams RJ, Spencer JP (2007) Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J Neurochem 103:1355–1367. https://doi.org/10.1111/j.1471-4159.2007.04841.x
Vellas B, Coley N, Ousset PJ, Berrut G, Dartigues JF, Dubois B, Grandjean H, Pasquier F, Piette F, Robert P, Touchon J, Garnier P, Mathiex-Fortunet H, Andrieu S (2012) Long-term use of standardised ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): a randomised placebo-controlled trial. Lancet Neurol 11:851–859. https://doi.org/10.1016/S1474-4422(12)70206-5
Vepsalainen S, Koivisto H, Pekkarinen E, Makinen P, Dobson G, McDougall GJ, Stewart D, Haapasalo A, Karjalainen RO, Tanila H, Hiltunen M (2013) Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J Nutr Biochem 24:360–370. https://doi.org/10.1016/j.jnutbio.2012.07.006
Wang YJ, Thomas P, Zhong JH, Bi FF, Kosaraju S, Pollard A, Fenech M, Zhou XF (2009) Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res 15:3–14. https://doi.org/10.1007/s12640-009-9000-x
Wang ZY, Liu JG, Yang HM (2016) Pharmacological effects of active components of Chinese herbal medicine in the treatment of Alzheimer’s disease: a review. Am J Chin Med 33:1–17. https://doi.org/10.1142/S0192415X16500853
Wang H, Jiang T, Li W, Gao N, Zhang T (2018) Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol Lett 282:100–108. https://doi.org/10.1016/j.toxlet.2017.10.021
Weng YS, Wang HF, Pai PY, Jong GP, Lai CH, Chung LC, Hsieh DJ, HsuanDay C, Kuo WW, Huang CY (2015) Tanshinone IIA prevents Leu27IGF-II-induced cardiomyocyte hypertrophy mediated by estrogen receptor and subsequent Akt Activation. Am J Chin Med 43:1567–1591. https://doi.org/10.1142/S0192415X15500895
Wightman EL (2017) Potential benefits of phytochemicals against Alzheimer’s disease. Proc Nutr Soc 76(2):106–112. https://doi.org/10.1017/S0029665116002962
Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36(7):838–849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
Wong KK, Ngo JC, Liu S, Lin HQ, Hu C, Shaw PC, Wan DC (2010) Interaction study of two diterpenes, cryptotanshinone and dihydrotanshinone, to human acetylcholinesterase and butyrylcholinesterase by molecular docking and kinetic analysis. Chem Biol Interact 187:335–339. https://doi.org/10.1016/j.cbi.2010.03.026
Xian YF, Lin ZX, Mao QQ, Ip SP, Che CT (2011) Uncaria rhynchophylla ameliorates cognitive deficits induced by d-galactose in mice. Planta Med 77(18):1977–1983. https://doi.org/10.1055/s-0031-1280125
Xie SS, Wang XB, Li JY, Yang L, Kong LY (2013) Design, synthesis and evaluation of novel tacrine–coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer’s disease. Eur J Med Chem 64:540–553. https://doi.org/10.1016/j.ejmech.2013.03.051
Xie SS, Wang X, Jiang N, Yu W, Wang KD, Lan JS, Li ZR, Kong LY (2015) Multi-target tacrine–coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur J Med Chem 95:153–165. https://doi.org/10.1016/j.ejmech.2015.03.040
Xiuli W, Wei G, Mao S (2015) Pharmacokinetic investigation on interaction between hydrophilic lithospermic acid B and lipophilic tanshinone IIA in rats: an experimental study. J Tradit Chin Med 35:206–210
Youn K, Lee S, Jeong WS, Ho CT, Jun M (2016) Protective role of corilagin on Aβ25-35-induced neurotoxicity: suppression of NF-κB signaling pathway. J Med Food 19(10):901–911. https://doi.org/10.1089/jmf.2016.3714
Yu TX, Zhang P, Guan Y, Zhen MQ (2015) Protective effects of luteolin against cognitive impairment induced by infusion of Aβ peptide in rats. Int J Clin Exp Pathol 8(6):6740–6747
Zhu J, Yang H, Chen Y, Lin H, Li Q, Mo J, Bian Y, Pei Y, Sun H (2018) Synthesis, pharmacology and molecular docking of multifunctional tacrine–ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease. J Enzyme Inhib Med Chem 33(1):496–506. https://doi.org/10.1080/14756366.2018.1430691
