Making sense of dislocation correlations
Tóm tắt
Từ khóa
Tài liệu tham khảo
J. P. Anderson, A. El-Azab, On the three-dimensional spatial correlations of curved dislocation systems. Mater. Theory. 5(1), 1 (2021). https://doi.org/10.1186/s41313-020-00026-w.
A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce, V. V. Bulatov, Enabling strain hardening simulations with dislocation dynamics. Model. Simul. Mater. Sci. Eng.15(6), 553–595 (2007). https://doi.org/10.1088/0965-0393/15/6/001.
F. F. Csikor, I. Groma, T. Hochrainer, D. Weygand, M. Zaiser, in Proceedings of the 11th International Symposium on Continuum Models and Discrete Systems, ed. by D. Jeulin, S. Forest. On the range of 3d dislocation pair correlations (Mines ParisTech Les PressesParis, 2007), pp. 271–276.
J. Deng, A. El-Azab, Dislocation pair correlations from dislocation dynamics simulations. J. Computer-Aided Mater. Des.14(1), 295–307 (2007). https://doi.org/10.1007/s10820-008-9090-4.
J. Deng, A. El-Azab, Mathematical and computational modelling of correlations in dislocation dynamics. Model. Simul. Mater. Sci. Eng.17(1), 075010 (2007). https://doi.org/10.1088/0965-0393/17/7/075010.
I. Groma, F. F. Csikor, M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater.51:, 1271–1281 (2003). https://doi.org/10.1016/S1359-6454(02)00517-7.
I. Groma, G. Györgyi, B. Kocsis, Dynamics of course grained disocation densities from an effective free energy. Philos. Mag.87(8-9), 1185–1199 (2007). https://doi.org/10.1080/14786430600835813.
I. Groma, P. D. Ispánovity, T. Hochrainer, Dynamics of curved dislocation ensembles. Phys. Rev. B. 103:, 174101 (2021). https://doi.org/10.1103/PhysRevB.103.174101.
I. Groma, M. Zaiser, P. D. Ispánovity, Dislocation patterning in a two-dimensional continuum theory of dislocations. Phys. Rev. B. 93:, 214110 (2016). https://doi.org/10.1103/PhysRevB.93.214110.
J. P. Hirth, J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968).
T. Hochrainer, Multipole expansion of continuum dislocations dynamics in terms of alignment tensors. Philos. Mag.95(12), 1321–1367 (2015). https://doi.org/10.1080/14786435.2015.1026297.
T. Hochrainer, Thermodynamically consistent continuum dislocation dynamics. J. Mech. Phys. Solids. 88:, 12–22 (2016). https://doi.org/10.1016/j.jmps.2015.12.015.
T. Hochrainer, On the derivation of boundary conditions for continuum dislocation dynamics. Crystals. 7(8), 235 (2017). https://doi.org/10.3390/cryst7080235.
T. Hochrainer, S. Sandfeld, M. Zaiser, P. Gumbsch, Continuum dislocation dynamics: towards a physically theory of plasticity. J. Mech. Phys. Solids. 63:, 167–178 (2014). https://doi.org/10.1016/j.jmps.2013.09.012.
E. Kröner, Inelastic behavior of solids (McGraw-Hill Book Company, New York, 1969).
E. Kröner, Benefits and shortcomings of the continuous theory of dislocations. Int. J. Solids Structs.38(6-7), 1115–1134 (2001). https://doi.org/10.1016/S0020-7683(00)00077-9.
P. Lin, A. El-Azab, Implementation of annihilation and junction reactions in vector density-based continuum dislocation dynamics. Model. Simul. Mater. Sci. Eng.28(4), 045003 (2020). https://doi.org/10.1088/1361-651x/ab7d90.
M. Monavari, S. Sandfeld, M. Zaiser, Continuum representation of systems of dislocation lines: A general method for deriving closed-form evolution equations. J. Mech. Phys. Solids. 95:, 575–601 (2016). https://doi.org/10.1016/j.jmps.2016.05.009.
M. Monavari, M. Zaiser, S. Sandfeld, Comparison of closure approximations for continuous dislocation dynamics. MRS Proc.1651: (2014). https://doi.org/10.1557/opl.2014.62.
R. B. Sills, A. Aghaei, W. Cai, Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Model. Simul. Mater. Sci. Eng.24(4), 045019 (2016). https://doi.org/10.1088/0965-0393/24/4/045019.
K Starkey, T Hochrainer, A El-Azab, Development of mean-field continuum dislocation kinematics with junction reactions using de Rham currents and graph theory. J Mech Phys Solids. 158:, 104685 (2022). https://doi.org/10.1016/j.jmps.2021.104685.
H. Stoyan, D. Stoyan, Simple stochastic models for the analysis of dislocation distributions. Phys. Status Solidi (a). 97(1), 163–172 (1986). https://doi.org/10.1002/pssa.2210970114.
M. Sudmanns, M. Stricker, D. Weygand, T. Hochrainer, K. Schulz, Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity. J. Mech. Phys. Solids. 132:, 103695 (2019). https://doi.org/10.1016/j.jmps.2019.103695.
P. -L. Valdenaire, Y. Le Bouar, B. Appolaire, A. Finel, Density-based crystal plasticity: From the discrete to the continuum. Phys. Rev. B. 93:, 214111 (2016). https://doi.org/10.1103/PhysRevB.93.214111.
B. Weger, S. Gupta, T. Hochrainer, Analysing discrete dislocation data using alignment and curvature tensors. Compt. Rendus. Phys. (2021). https://doi.org/10.5802/crphys.60.
R. Wu, D. Tüzes, P. Ispánovity, I. Groma, T. Hochrainer, M. Zaiser, Instability of dislocation fluxes in a single slip: Deterministic and stochastic models of dislocation patterning. Phys. Rev. B. 98(5), 054110 (2018). https://doi.org/10.1103/PhysRevB.98.054110.
S. Xia, J. Belak, A. El-Azab, The discrete-continuum connection in dislocation dynamics: I. time coarse graining of cross slip. Model. Simul. Mater. Sci. Eng.24(7), 075007 (2016). https://doi.org/10.1088/0965-0393/24/7/075007.
M. Zaiser, Local density approximation for the energy functional of three-dimensional dislocation systems. Phys. Rev. B. 92:, 174120 (2015). https://doi.org/10.1103/PhysRevB.92.174120.