Making sense of dislocation correlations

Thomas Hochrainer1, Benedikt Weger1, Satyapriya Gupta1
1Technische Universität Graz, Institut für Festigkeitslehre, Kopernikusgasse 24, Graz, 8010, Austria

Tóm tắt

AbstractSince crystal plasticity is the result of moving and interacting dislocations, it seems self-evident that continuum plasticity should in principle be derivable as a statistical continuum theory of dislocations, though in practice we are still far from doing so. One key to any statistical continuum theory of interacting particles is the consideration of spatial correlations. However, because dislocations are extended one-dimensional defects, the classical definition of correlations for point particles is not readily applicable to dislocation systems: the line-like nature of dislocations entails that a scalar pair correlation function does not suffice for characterizing spatial correlations and a hierarchy of two-point tensors is required in general. The extended nature of dislocations as closed curves leads to strong self-correlations along the dislocation line. In the current contribution, we thoroughly introduce the concept of pair correlations for general averaged dislocation systems and illustrate self-correlations as well as the content of low order correlation tensors using a simple model system. We furthermore detail how pair correlation information may be obtained from three-dimensional discrete dislocation simulations and provide a first analysis of correlations from such simulations. We briefly discuss how the pair correlation information may be employed to improve existing continuum dislocation theories and why we think it is important for analyzing discrete dislocation data.

Từ khóa


Tài liệu tham khảo

J. P. Anderson, A. El-Azab, On the three-dimensional spatial correlations of curved dislocation systems. Mater. Theory. 5(1), 1 (2021). https://doi.org/10.1186/s41313-020-00026-w.

A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce, V. V. Bulatov, Enabling strain hardening simulations with dislocation dynamics. Model. Simul. Mater. Sci. Eng.15(6), 553–595 (2007). https://doi.org/10.1088/0965-0393/15/6/001.

F. F. Csikor, I. Groma, T. Hochrainer, D. Weygand, M. Zaiser, in Proceedings of the 11th International Symposium on Continuum Models and Discrete Systems, ed. by D. Jeulin, S. Forest. On the range of 3d dislocation pair correlations (Mines ParisTech Les PressesParis, 2007), pp. 271–276.

J. Deng, A. El-Azab, Dislocation pair correlations from dislocation dynamics simulations. J. Computer-Aided Mater. Des.14(1), 295–307 (2007). https://doi.org/10.1007/s10820-008-9090-4.

J. Deng, A. El-Azab, Mathematical and computational modelling of correlations in dislocation dynamics. Model. Simul. Mater. Sci. Eng.17(1), 075010 (2007). https://doi.org/10.1088/0965-0393/17/7/075010.

I. Groma, F. F. Csikor, M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater.51:, 1271–1281 (2003). https://doi.org/10.1016/S1359-6454(02)00517-7.

I. Groma, G. Györgyi, B. Kocsis, Dynamics of course grained disocation densities from an effective free energy. Philos. Mag.87(8-9), 1185–1199 (2007). https://doi.org/10.1080/14786430600835813.

I. Groma, P. D. Ispánovity, T. Hochrainer, Dynamics of curved dislocation ensembles. Phys. Rev. B. 103:, 174101 (2021). https://doi.org/10.1103/PhysRevB.103.174101.

I. Groma, M. Zaiser, P. D. Ispánovity, Dislocation patterning in a two-dimensional continuum theory of dislocations. Phys. Rev. B. 93:, 214110 (2016). https://doi.org/10.1103/PhysRevB.93.214110.

J. P. Hirth, J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968).

T. Hochrainer, Multipole expansion of continuum dislocations dynamics in terms of alignment tensors. Philos. Mag.95(12), 1321–1367 (2015). https://doi.org/10.1080/14786435.2015.1026297.

T. Hochrainer, Thermodynamically consistent continuum dislocation dynamics. J. Mech. Phys. Solids. 88:, 12–22 (2016). https://doi.org/10.1016/j.jmps.2015.12.015.

T. Hochrainer, On the derivation of boundary conditions for continuum dislocation dynamics. Crystals. 7(8), 235 (2017). https://doi.org/10.3390/cryst7080235.

T. Hochrainer, S. Sandfeld, M. Zaiser, P. Gumbsch, Continuum dislocation dynamics: towards a physically theory of plasticity. J. Mech. Phys. Solids. 63:, 167–178 (2014). https://doi.org/10.1016/j.jmps.2013.09.012.

E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen (Springer, Berlin, 1958).

E. Kröner, Inelastic behavior of solids (McGraw-Hill Book Company, New York, 1969).

E. Kröner, Benefits and shortcomings of the continuous theory of dislocations. Int. J. Solids Structs.38(6-7), 1115–1134 (2001). https://doi.org/10.1016/S0020-7683(00)00077-9.

P. Lin, A. El-Azab, Implementation of annihilation and junction reactions in vector density-based continuum dislocation dynamics. Model. Simul. Mater. Sci. Eng.28(4), 045003 (2020). https://doi.org/10.1088/1361-651x/ab7d90.

M. Monavari, S. Sandfeld, M. Zaiser, Continuum representation of systems of dislocation lines: A general method for deriving closed-form evolution equations. J. Mech. Phys. Solids. 95:, 575–601 (2016). https://doi.org/10.1016/j.jmps.2016.05.009.

M. Monavari, M. Zaiser, S. Sandfeld, Comparison of closure approximations for continuous dislocation dynamics. MRS Proc.1651: (2014). https://doi.org/10.1557/opl.2014.62.

R. B. Sills, A. Aghaei, W. Cai, Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Model. Simul. Mater. Sci. Eng.24(4), 045019 (2016). https://doi.org/10.1088/0965-0393/24/4/045019.

K Starkey, T Hochrainer, A El-Azab, Development of mean-field continuum dislocation kinematics with junction reactions using de Rham currents and graph theory. J Mech Phys Solids. 158:, 104685 (2022). https://doi.org/10.1016/j.jmps.2021.104685.

H. Stoyan, D. Stoyan, Simple stochastic models for the analysis of dislocation distributions. Phys. Status Solidi (a). 97(1), 163–172 (1986). https://doi.org/10.1002/pssa.2210970114.

M. Sudmanns, M. Stricker, D. Weygand, T. Hochrainer, K. Schulz, Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity. J. Mech. Phys. Solids. 132:, 103695 (2019). https://doi.org/10.1016/j.jmps.2019.103695.

P. -L. Valdenaire, Y. Le Bouar, B. Appolaire, A. Finel, Density-based crystal plasticity: From the discrete to the continuum. Phys. Rev. B. 93:, 214111 (2016). https://doi.org/10.1103/PhysRevB.93.214111.

B. Weger, S. Gupta, T. Hochrainer, Analysing discrete dislocation data using alignment and curvature tensors. Compt. Rendus. Phys. (2021). https://doi.org/10.5802/crphys.60.

R. Wu, D. Tüzes, P. Ispánovity, I. Groma, T. Hochrainer, M. Zaiser, Instability of dislocation fluxes in a single slip: Deterministic and stochastic models of dislocation patterning. Phys. Rev. B. 98(5), 054110 (2018). https://doi.org/10.1103/PhysRevB.98.054110.

S. Xia, J. Belak, A. El-Azab, The discrete-continuum connection in dislocation dynamics: I. time coarse graining of cross slip. Model. Simul. Mater. Sci. Eng.24(7), 075007 (2016). https://doi.org/10.1088/0965-0393/24/7/075007.

M. Zaiser, Local density approximation for the energy functional of three-dimensional dislocation systems. Phys. Rev. B. 92:, 174120 (2015). https://doi.org/10.1103/PhysRevB.92.174120.

M. Zaiser, M. C. Miguel, I. Groma, Statistical dynamics of dislocation systems: The influence of dislocation-dislocation correlations. Phys. Rev. B. 64:, 224102 (2001). https://doi.org/10.1103/PhysRevB.64.224102.