Lu, 2014, IEEE Netw., 28, 46, 10.1109/MNET.2014.6863131
M. Armbrust , R. S.Xin , C.Lian , et al. , Spark SQL: Relational data processing in spark, Proceedings of the ACM SIGMOD International Conference on Management of Data , vol. 2015-May, 2015, pp. 1383–1394
W. J. Dally , C. T.Gray , J.Poulton , et al. , Hardware-Enabled Artificial Intelligence. IEEE Symposium on VLSI Circuits, Digest of Technical Papers , vol. 2018-June. 2018, pp. 3–6
Gkoupidenis, 2017, Nat. Commun., 8, 1, 10.1038/ncomms15448
Wang, 2017, Nanoscale Res. Lett., 12, 347, 10.1186/s11671-017-2114-9
Le Gallo, 2018, Nat. Electron., 1, 246, 10.1038/s41928-018-0054-8
Roy, 2019, Nature, 575, 607, 10.1038/s41586-019-1677-2
Adamatzky, 2017, Prog. Biophys. Mol. Biol., 131, 469, 10.1016/j.pbiomolbio.2017.08.004
Zidan, 2018, Nat. Electron., 1, 22, 10.1038/s41928-017-0006-8
Waldrop, 2016, Nature, 530, 144, 10.1038/530144a
Lin, 2019, Nat. Electron., 2, 274, 10.1038/s41928-019-0273-7
Blasing, 2020, Proc. IEEE, 1
Islam, 2019, J. Phys. D: Appl. Phys., 52, 113001, 10.1088/1361-6463/aaf784
Grollier, 2016, Proc. IEEE, 104, 2024, 10.1109/JPROC.2016.2597152
Cai, 2019, Phys. Rev. Appl., 11, 034015, 10.1103/PhysRevApplied.11.034015
S. E. Russek , C. A.Donnelly , M. L.Schneider , et al. , Stochastic single flux quantum neuromorphic computing using magnetically tunable Josephson junctions, 2016 IEEE International Conference on Rebooting Computing, ICRC 2016 - Conference Proceedings , San Diego, CA, USA, IEEE, 2016
Zahedinejad, 2020, Nat. Nanotechnol., 15, 47, 10.1038/s41565-019-0593-9
Sengupta, 2017, Appl. Phys. Rev., 4, 041105, 10.1063/1.5012763
Jiang, 2017, Phys. Rep., 704, 1, 10.1016/j.physrep.2017.08.001
Fert, 2013, Nat. Nanotechnol., 8, 152, 10.1038/nnano.2013.29
Zhang, 2015, Sci. Rep., 5, 1
Zhang, 2020, J. Phys.: Condens. Matter, 32, 143001
Parkin, 2008, Science, 320, 190, 10.1126/science.1145799
Lima Fernandes, 2018, Nat. Commun., 9, 1, 10.1038/s41467-018-06827-5
Mochizuki, 2014, Nat. Mater., 13, 241, 10.1038/nmat3862
Back, 2020, J. Phys. D: Appl. Phys., 53, 363001, 10.1088/1361-6463/ab8418
Fert, 2017, Nat. Rev. Mater., 2, 17031, 10.1038/natrevmats.2017.31
Kang, 2016, Proc. IEEE, 104, 2040, 10.1109/JPROC.2016.2591578
Skyrme, 1962, Nucl. Phys., 31, 556, 10.1016/0029-5582(62)90775-7
Bogdanov, 2001, Phys. Rev. Lett., 87, 037203, 10.1103/PhysRevLett.87.037203
Muhlbauer, 2009, Science, 323, 915, 10.1126/science.1166767
Rowland, 2016, Phys. Rev. B, 93, 020404, 10.1103/PhysRevB.93.020404
Kézsmárki, 2015, Nat. Mater., 14, 1116, 10.1038/nmat4402
Wiesendanger, 2016, Nat. Rev. Mater., 1, 16044, 10.1038/natrevmats.2016.44
Zhang, 2015, Sci. Rep., 5, 15773, 10.1038/srep15773
Woo, 2018, Nat. Electron., 1, 434, 10.1038/s41928-018-0122-0
Finizio, 2019, Nano Lett., 19, 7246, 10.1021/acs.nanolett.9b02840
R. Wiesendanger , in Atomic- and Nanoscale Magnetism , ed. R. Wiesendanger , Springer International Publishing , Cham , 2018
Kim, 2014, Phys. Rev. B: Condens. Matter Mater. Phys., 90, 064410, 10.1103/PhysRevB.90.064410
Meyer, 2019, Nat. Commun., 10, 3823, 10.1038/s41467-019-11831-4
Fert, 2013, Nat. Nanotechnol., 8, 152, 10.1038/nnano.2013.29
Zhang, 2019, IEEE Electron Device Lett., 40, 1984, 10.1109/LED.2019.2946863
Zhang, 2015, Sci. Rep., 5, 11369, 10.1038/srep11369
Zhang, 2015, New J. Phys., 17, 023061, 10.1088/1367-2630/17/2/023061
Finocchio, 2015, Appl. Phys. Lett., 107, 262401, 10.1063/1.4938539
Chui, 2015, AIP Adv., 5, 097126, 10.1063/1.4930904
Luo, 2017, Appl. Phys. Lett., 110, 112402, 10.1063/1.4978510
Jin, 2018, Phys. Rev. Appl., 9, 1, 10.1103/PhysRevApplied.9.044007
S. Li , W.Kang , X.Chen , et al. , Emerging neuromorphic computing paradigms exploring magnetic skyrmions, Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI , Hong Kong, China: IEEE, 2018
Yu, 2018, Proc. IEEE, 106, 260, 10.1109/JPROC.2018.2790840
van de Burgt, 2017, Nat. Mater., 16, 414, 10.1038/nmat4856
Wu, 2015, IEEE Trans Circuits Syst II Express Briefs, 62, 1088, 10.1109/TCSII.2015.2456372
Jo, 2010, Nano Lett., 10, 1297, 10.1021/nl904092h
Yu, 2013, Adv. Mater., 25, 1774, 10.1002/adma.201203680
Seo, 2011, Nanotechnology, 22, 254023, 10.1088/0957-4484/22/25/254023
Kuzum, 2012, Nano Lett., 12, 2179, 10.1021/nl201040y
M. Suri , O.Bichler , D.Querlioz , et al. , Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction, Technical Digest – International Electron Devices Meeting , IEDM, Washington, DC, USA, IEEE, 2011
Sengupta, 2015, Appl. Phys. Lett., 106, 143701, 10.1063/1.4917011
Krzysteczko, 2012, Adv. Mater., 24, 762, 10.1002/adma.201103723
Fan, 2015, IEEE Trans. Nanotechnol., 14, 1013, 10.1109/TNANO.2015.2437902
Sharad, 2012, IEEE Trans. Nanotechnol., 11, 843, 10.1109/TNANO.2012.2202125
Ohno, 2011, Nat. Mater., 10, 591, 10.1038/nmat3054
Hasegawa, 2010, Adv. Mater., 22, 1831, 10.1002/adma.200903680
Yang, 2017, Adv. Electron. Mater., 3, 1
Wang, 2018, Nat. Electron., 1, 137, 10.1038/s41928-018-0023-2
Li, 2017, Nanotechnology, 28, 31LT01, 10.1088/1361-6528/aa7af5
Huang, 2017, Nanotechnology, 28, 08LT02, 10.1088/1361-6528/aa5838
Song, 2020, Nat. Electron., 3, 148, 10.1038/s41928-020-0385-0
Borisyuk, 1997, BioSystems, 40, 3, 10.1016/0303-2647(96)01624-3
Burr, 2017, Adv. Phys.: X, 2, 89
Kalita, 2019, Sci. Rep., 9, 53, 10.1038/s41598-018-35828-z
Fan, 2015, IEEE Trans. Nanotechnol., 14, 1013, 10.1109/TNANO.2015.2437902
J. Lin , A.Annadi , S.Sonde , et al. , Low-voltage artificial neuron using feedback engineered insulator-to-metal-transition devices, 2016 IEEE International Electron Devices Meeting (IEDM) , Washington, DC, USA: IEEE, 2016, 34.5.1-34.5.4
Ma, 2019, Nano Lett., 19, 353, 10.1021/acs.nanolett.8b03983
Chen, 2018, Nanoscale, 10, 6139, 10.1039/C7NR09722K
Azam, 2018, J. Appl. Phys., 124, 152122, 10.1063/1.5042308
Z. He and D.Fan , A tunable magnetic skyrmion neuron cluster for energy efficient artificial neural network. Proceedings of the 2017 Design, Automation and Test in Europe, DATE 2017 . Lausanne, Switzerland: IEEE, 2017, pp. 350–355
Brigner, 2019, IEEE J. Explor. Solid-State Comput. Devices Circuits, 5, 19, 10.1109/JXCDC.2019.2904191
Brigner, 2019, IEEE Trans. Electron Devices, 66, 4970, 10.1109/TED.2019.2938952
Fernandes, 2020, J. Phys.: Condens. Matter, 32, 425802
H. Jaeger , The “Echo State” Approach to Analysing and Training Recurrent Neural Networks , 2001
Maass, 2002, Neural Comput., 14, 2531, 10.1162/089976602760407955
B. Schrauwen , D.Verstraeten and J.Van Campenhout , An overview of reservoir computing: Theory, applications and implementations, ESANN 2007 Proceedings – 15th European Symposium on Artificial Neural Networks , 2007, pp. 471–482
Du, 2017, Nat. Commun., 8, 1, 10.1038/s41467-016-0009-6
Tanaka, 2019, Neural Netw., 115, 100, 10.1016/j.neunet.2019.03.005
Torrejon, 2017, Nature, 547, 428, 10.1038/nature23011
Nakane, 2018, IEEE Access, 6, 4462, 10.1109/ACCESS.2018.2794584
Prychynenko, 2018, Phys. Rev. Appl., 9, 014034, 10.1103/PhysRevApplied.9.014034
Bourianoff, 2018, AIP Adv., 8, 055602, 10.1063/1.5006918
Jiang, 2019, Appl. Phys. Lett., 115, 192403, 10.1063/1.5115183
Alaghi, 2013, ACM Trans. Embed. Comput. Syst., 12, 1, 10.1145/2465787.2465794
Pinna, 2018, Phys. Rev. Appl., 9, 1, 10.1103/PhysRevApplied.9.064018
Miltat, 2018, Phys. Rev. B, 97, 214426, 10.1103/PhysRevB.97.214426
Zázvorka, 2019, Nat. Nanotechnol., 14, 658, 10.1038/s41565-019-0436-8
Yao, 2020, IEEE Trans. Electron Devices, 67, 2553, 10.1109/TED.2020.2989420
Jiang, 2017, Nat. Commun., 8, 882, 10.1038/s41467-017-00869-x
Chauwin, 2019, Phys. Rev. Appl., 12, 1, 10.1103/PhysRevApplied.12.064053
Yang, 2016, Phys. Rev. B, 93, 224505, 10.1103/PhysRevB.93.224505
Liu, 2016, Chem. Phys. Lett., 649, 135, 10.1016/j.cplett.2016.02.054
Zhang, 2016, Phys. Rev. B, 94, 1
Dohi, 2019, Nat. Commun., 10, 5153, 10.1038/s41467-019-13182-6
T.-E. Park , L.Peng , J.Liang , et al. , Observation of magnetic skyrmion crystals in a van der Waals ferromagnet Fe3GeTe2, ArXiv e-prints 2019
Wu, 2020, Nat. Commun., 11, 1, 10.1038/s41467-019-13993-7
Hou, 2017, Adv. Mater., 29, 1701144, 10.1002/adma.201701144
Sun, 2013, Phys. Rev. Lett., 110, 167201, 10.1103/PhysRevLett.110.167201
Chen, 2018, IEEE Trans. Magn., 54, 1, 10.1109/TMAG.2018.2889566
Legrand, 2020, Nat. Mater., 19, 34, 10.1038/s41563-019-0468-3