Magnetic skyrmions for unconventional computing

Materials Horizons - Tập 8 Số 3 - Trang 854-868
Sai Li1,2,3,4,5, Wang Kang1,2,3,4,5, Xichao Zhang4,6,7,8, Tianxiao Nie1,2,3,4,5, Yan Zhou4,6,7,8, Kang L. Wang9,10,11, Weisheng Zhao1,2,3,4,5
1Beihang University
2Beijing
3Beijing Advanced Innovation Center for Big Data and Brain Computing
4China
5School of Integrated Circuit Science and Engineering, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
6School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
7Shenzhen
8The Chinese University of Hong Kong
9Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA
10Los Angeles
11University of California

Tóm tắt

A rich variety of unconventional computing paradigms has been raised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing.

Từ khóa


Tài liệu tham khảo

Lu, 2014, IEEE Netw., 28, 46, 10.1109/MNET.2014.6863131

M. Armbrust , R. S.Xin , C.Lian , et al. , Spark SQL: Relational data processing in spark, Proceedings of the ACM SIGMOD International Conference on Management of Data , vol. 2015-May, 2015, pp. 1383–1394

W. J. Dally , C. T.Gray , J.Poulton , et al. , Hardware-Enabled Artificial Intelligence. IEEE Symposium on VLSI Circuits, Digest of Technical Papers , vol. 2018-June. 2018, pp. 3–6

Gkoupidenis, 2017, Nat. Commun., 8, 1, 10.1038/ncomms15448

Wang, 2017, Nanoscale Res. Lett., 12, 347, 10.1186/s11671-017-2114-9

Le Gallo, 2018, Nat. Electron., 1, 246, 10.1038/s41928-018-0054-8

Roy, 2019, Nature, 575, 607, 10.1038/s41586-019-1677-2

Adamatzky, 2017, Prog. Biophys. Mol. Biol., 131, 469, 10.1016/j.pbiomolbio.2017.08.004

Zidan, 2018, Nat. Electron., 1, 22, 10.1038/s41928-017-0006-8

Waldrop, 2016, Nature, 530, 144, 10.1038/530144a

Lin, 2019, Nat. Electron., 2, 274, 10.1038/s41928-019-0273-7

Blasing, 2020, Proc. IEEE, 1

Islam, 2019, J. Phys. D: Appl. Phys., 52, 113001, 10.1088/1361-6463/aaf784

Grollier, 2016, Proc. IEEE, 104, 2024, 10.1109/JPROC.2016.2597152

Cai, 2019, Phys. Rev. Appl., 11, 034015, 10.1103/PhysRevApplied.11.034015

S. E. Russek , C. A.Donnelly , M. L.Schneider , et al. , Stochastic single flux quantum neuromorphic computing using magnetically tunable Josephson junctions, 2016 IEEE International Conference on Rebooting Computing, ICRC 2016 - Conference Proceedings , San Diego, CA, USA, IEEE, 2016

Zahedinejad, 2020, Nat. Nanotechnol., 15, 47, 10.1038/s41565-019-0593-9

Sengupta, 2017, Appl. Phys. Rev., 4, 041105, 10.1063/1.5012763

Jiang, 2017, Phys. Rep., 704, 1, 10.1016/j.physrep.2017.08.001

Fert, 2013, Nat. Nanotechnol., 8, 152, 10.1038/nnano.2013.29

Zhang, 2015, Sci. Rep., 5, 1

Zhang, 2020, J. Phys.: Condens. Matter, 32, 143001

Parkin, 2008, Science, 320, 190, 10.1126/science.1145799

Lima Fernandes, 2018, Nat. Commun., 9, 1, 10.1038/s41467-018-06827-5

Mochizuki, 2014, Nat. Mater., 13, 241, 10.1038/nmat3862

Back, 2020, J. Phys. D: Appl. Phys., 53, 363001, 10.1088/1361-6463/ab8418

Fert, 2017, Nat. Rev. Mater., 2, 17031, 10.1038/natrevmats.2017.31

Kang, 2016, Proc. IEEE, 104, 2040, 10.1109/JPROC.2016.2591578

Skyrme, 1962, Nucl. Phys., 31, 556, 10.1016/0029-5582(62)90775-7

Bogdanov, 2001, Phys. Rev. Lett., 87, 037203, 10.1103/PhysRevLett.87.037203

Muhlbauer, 2009, Science, 323, 915, 10.1126/science.1166767

Rowland, 2016, Phys. Rev. B, 93, 020404, 10.1103/PhysRevB.93.020404

Kézsmárki, 2015, Nat. Mater., 14, 1116, 10.1038/nmat4402

Wiesendanger, 2016, Nat. Rev. Mater., 1, 16044, 10.1038/natrevmats.2016.44

Zhang, 2015, Sci. Rep., 5, 15773, 10.1038/srep15773

Woo, 2018, Nat. Electron., 1, 434, 10.1038/s41928-018-0122-0

Finizio, 2019, Nano Lett., 19, 7246, 10.1021/acs.nanolett.9b02840

R. Wiesendanger , in Atomic- and Nanoscale Magnetism , ed. R. Wiesendanger , Springer International Publishing , Cham , 2018

Kim, 2014, Phys. Rev. B: Condens. Matter Mater. Phys., 90, 064410, 10.1103/PhysRevB.90.064410

Meyer, 2019, Nat. Commun., 10, 3823, 10.1038/s41467-019-11831-4

Fert, 2013, Nat. Nanotechnol., 8, 152, 10.1038/nnano.2013.29

Zhang, 2019, IEEE Electron Device Lett., 40, 1984, 10.1109/LED.2019.2946863

Zhang, 2015, Sci. Rep., 5, 11369, 10.1038/srep11369

Zhang, 2015, New J. Phys., 17, 023061, 10.1088/1367-2630/17/2/023061

Finocchio, 2015, Appl. Phys. Lett., 107, 262401, 10.1063/1.4938539

Chui, 2015, AIP Adv., 5, 097126, 10.1063/1.4930904

Luo, 2017, Appl. Phys. Lett., 110, 112402, 10.1063/1.4978510

Jin, 2018, Phys. Rev. Appl., 9, 1, 10.1103/PhysRevApplied.9.044007

S. Li , W.Kang , X.Chen , et al. , Emerging neuromorphic computing paradigms exploring magnetic skyrmions, Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI , Hong Kong, China: IEEE, 2018

Yu, 2018, Proc. IEEE, 106, 260, 10.1109/JPROC.2018.2790840

van de Burgt, 2017, Nat. Mater., 16, 414, 10.1038/nmat4856

Wu, 2015, IEEE Trans Circuits Syst II Express Briefs, 62, 1088, 10.1109/TCSII.2015.2456372

Jo, 2010, Nano Lett., 10, 1297, 10.1021/nl904092h

Yu, 2013, Adv. Mater., 25, 1774, 10.1002/adma.201203680

Seo, 2011, Nanotechnology, 22, 254023, 10.1088/0957-4484/22/25/254023

Kuzum, 2012, Nano Lett., 12, 2179, 10.1021/nl201040y

M. Suri , O.Bichler , D.Querlioz , et al. , Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction, Technical Digest – International Electron Devices Meeting , IEDM, Washington, DC, USA, IEEE, 2011

Sengupta, 2015, Appl. Phys. Lett., 106, 143701, 10.1063/1.4917011

Krzysteczko, 2012, Adv. Mater., 24, 762, 10.1002/adma.201103723

Fan, 2015, IEEE Trans. Nanotechnol., 14, 1013, 10.1109/TNANO.2015.2437902

Sharad, 2012, IEEE Trans. Nanotechnol., 11, 843, 10.1109/TNANO.2012.2202125

Ohno, 2011, Nat. Mater., 10, 591, 10.1038/nmat3054

Hasegawa, 2010, Adv. Mater., 22, 1831, 10.1002/adma.200903680

Yang, 2017, Adv. Electron. Mater., 3, 1

Wang, 2018, Nat. Electron., 1, 137, 10.1038/s41928-018-0023-2

Li, 2017, Nanotechnology, 28, 31LT01, 10.1088/1361-6528/aa7af5

Huang, 2017, Nanotechnology, 28, 08LT02, 10.1088/1361-6528/aa5838

Song, 2020, Nat. Electron., 3, 148, 10.1038/s41928-020-0385-0

Borisyuk, 1997, BioSystems, 40, 3, 10.1016/0303-2647(96)01624-3

Burr, 2017, Adv. Phys.: X, 2, 89

Kalita, 2019, Sci. Rep., 9, 53, 10.1038/s41598-018-35828-z

Fan, 2015, IEEE Trans. Nanotechnol., 14, 1013, 10.1109/TNANO.2015.2437902

J. Lin , A.Annadi , S.Sonde , et al. , Low-voltage artificial neuron using feedback engineered insulator-to-metal-transition devices, 2016 IEEE International Electron Devices Meeting (IEDM) , Washington, DC, USA: IEEE, 2016, 34.5.1-34.5.4

Ma, 2019, Nano Lett., 19, 353, 10.1021/acs.nanolett.8b03983

Chen, 2018, Nanoscale, 10, 6139, 10.1039/C7NR09722K

Azam, 2018, J. Appl. Phys., 124, 152122, 10.1063/1.5042308

Z. He and D.Fan , A tunable magnetic skyrmion neuron cluster for energy efficient artificial neural network. Proceedings of the 2017 Design, Automation and Test in Europe, DATE 2017 . Lausanne, Switzerland: IEEE, 2017, pp. 350–355

Brigner, 2019, IEEE J. Explor. Solid-State Comput. Devices Circuits, 5, 19, 10.1109/JXCDC.2019.2904191

Brigner, 2019, IEEE Trans. Electron Devices, 66, 4970, 10.1109/TED.2019.2938952

Fernandes, 2020, J. Phys.: Condens. Matter, 32, 425802

H. Jaeger , The “Echo State” Approach to Analysing and Training Recurrent Neural Networks , 2001

Maass, 2002, Neural Comput., 14, 2531, 10.1162/089976602760407955

B. Schrauwen , D.Verstraeten and J.Van Campenhout , An overview of reservoir computing: Theory, applications and implementations, ESANN 2007 Proceedings – 15th European Symposium on Artificial Neural Networks , 2007, pp. 471–482

Du, 2017, Nat. Commun., 8, 1, 10.1038/s41467-016-0009-6

Tanaka, 2019, Neural Netw., 115, 100, 10.1016/j.neunet.2019.03.005

Torrejon, 2017, Nature, 547, 428, 10.1038/nature23011

Nakane, 2018, IEEE Access, 6, 4462, 10.1109/ACCESS.2018.2794584

Prychynenko, 2018, Phys. Rev. Appl., 9, 014034, 10.1103/PhysRevApplied.9.014034

Bourianoff, 2018, AIP Adv., 8, 055602, 10.1063/1.5006918

Jiang, 2019, Appl. Phys. Lett., 115, 192403, 10.1063/1.5115183

Alaghi, 2013, ACM Trans. Embed. Comput. Syst., 12, 1, 10.1145/2465787.2465794

Pinna, 2018, Phys. Rev. Appl., 9, 1, 10.1103/PhysRevApplied.9.064018

Miltat, 2018, Phys. Rev. B, 97, 214426, 10.1103/PhysRevB.97.214426

Zázvorka, 2019, Nat. Nanotechnol., 14, 658, 10.1038/s41565-019-0436-8

Yao, 2020, IEEE Trans. Electron Devices, 67, 2553, 10.1109/TED.2020.2989420

Jiang, 2017, Nat. Commun., 8, 882, 10.1038/s41467-017-00869-x

Chauwin, 2019, Phys. Rev. Appl., 12, 1, 10.1103/PhysRevApplied.12.064053

Yang, 2016, Phys. Rev. B, 93, 224505, 10.1103/PhysRevB.93.224505

Liu, 2016, Chem. Phys. Lett., 649, 135, 10.1016/j.cplett.2016.02.054

Zhang, 2016, Phys. Rev. B, 94, 1

Dohi, 2019, Nat. Commun., 10, 5153, 10.1038/s41467-019-13182-6

T.-E. Park , L.Peng , J.Liang , et al. , Observation of magnetic skyrmion crystals in a van der Waals ferromagnet Fe3GeTe2, ArXiv e-prints 2019

Wu, 2020, Nat. Commun., 11, 1, 10.1038/s41467-019-13993-7

Hou, 2017, Adv. Mater., 29, 1701144, 10.1002/adma.201701144

Sun, 2013, Phys. Rev. Lett., 110, 167201, 10.1103/PhysRevLett.110.167201

Chen, 2018, IEEE Trans. Magn., 54, 1, 10.1109/TMAG.2018.2889566

Legrand, 2020, Nat. Mater., 19, 34, 10.1038/s41563-019-0468-3