Magnetic Resonance Imaging Contrast Agents in the Study of Development

Current Topics in Developmental Biology - Tập 70 - Trang 35-56 - 2005
Angelique Louie1
1Department of Biomedical Engineering, University of California, Davis, Davis, California 95616

Tài liệu tham khảo

Aime, 2002, Paramagnetic lanthanide(III) complexes as pH‐sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications, Magn. Reson. Med., 47, 639, 10.1002/mrm.10106 Aime, 2002, Novel pH‐reporter MRI contrast agents, Angew Chem. Int. Ed. Engl., 41, 4334, 10.1002/1521-3773(20021115)41:22<4334::AID-ANIE4334>3.0.CO;2-1 Aime, 2003, Innovative magnetic resonance imaging diagnostic agents based on paramagnetic Gd(III) complexes, Biopolymers, 66, 419, 10.1002/bip.10357 Allegrini, 2003, Three‐dimensional MRI of cerebral projections in the rat brain in vivo after intracortical injection of MnCl2, NMR Biomed., 16, 252, 10.1002/nbm.834 Aoki, 2002, Dynamic activity‐induced manganese‐dependent contrast magnetic resonance imaging (DAIM MRI), Magn. Reson. Med., 48, 927, 10.1002/mrm.10320 Bogdanov, 1998, The development of in vivo imaging systems to study gene expression, TIBTECH, 16, 5, 10.1016/S0167-7799(97)01150-5 Bowen, 2002, Application of the static dephasing regime theory to superparamagnetic iron‐oxide loaded cells, Magn. Reson. Med., 48, 52, 10.1002/mrm.10192 Bulte, 2003, MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain, Magn. Reson. Med., 50, 201, 10.1002/mrm.10511 Chapon, 2002, In utero time‐course assessment of mouse embryo development using high resolution magnetic resonance imaging, Anat. Embryol., 206, 131, 10.1007/s00429-002-0281-6 Dhenain, 2001, Three‐dimensional digital mouse atlas using high‐resolution MRI, Dev. Biol., 232, 458, 10.1006/dbio.2001.0189 Glogard, 2003, Novel radical‐responsive MRI contrast agent based on paramagnetic liposomes, Magn. Reson. Chem., 41, 585, 10.1002/mrc.1208 Hamilton, 1994, Early identification of sites of embryo implantation in rats by means of gadolinium‐enhanced MR imaging, J. Magn. Reson. Imaging, 4, 481, 10.1002/jmri.1880040340 Hanaoka, 2002, Design and synthesis of a novel magnetic resonance imaging contrast agent for selective sensing of zinc ion, Chem. Biol., 9, 1027, 10.1016/S1074-5521(02)00216-8 Hauger, 2000, Nephrotoxic nephritis and obstructive nephropathy:Evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide–preliminary findings in a rat model, Radiology, 217, 819, 10.1148/radiology.217.3.r00dc04819 Henkelman, 2001, Magnetization transfer in MRI: A review, NMR Biomed., 14, 57, 10.1002/nbm.683 Hill, 2003, Serial cardian magnetic resonance imaging of injected mesenchymal stem cells, Circulation, 108, 1009, 10.1161/01.CIR.0000084537.66419.7A Hogemann, 2002, Seeing inside the body: MR imaging of gene expression, Eur. J. Nuc. Med., 29, 400, 10.1007/s00259-002-0765-x Hueber, 1998, Fluorescently detectable magnetic resonance imaging agents, Biocong. Chem., 9, 242, 10.1021/bc970153k Jacobs, 2001, Complementary emerging techniques: High resolution PET and MRI, Curr. Opin. Neurobiol., 11, 621, 10.1016/S0959-4388(00)00259-2 Jacobs, 2003, MRI: Volumetric imaging for vital imaging and atlas construction, Imag. Cell Biol., (Nature special supplement),, SS10 Jacques, 2002, New classes of MRI contrast agents, Top. Curr. Chem., 221, 123, 10.1007/3-540-45733-X_5 Kawaguchi, 2000, Structure of dextran‐magnetite complex: Relation between conformation of dextran chains covering core and its molecular weight, J. Matl. Sci. Matl. Med., 11, 31, 10.1023/A:1008933601813 Kehagias, 2001, Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide particles (SH U 555 A), J. Mag. Res. Med., 14, 595 Kraitchman, 2003, In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction, Circulation, 107, 2290, 10.1161/01.CIR.0000070931.62772.4E Landfester, 2003, Encapsulation of magnetite particles for biomedical application, J. Phys. Condens Matter, 15, S1345, 10.1088/0953-8984/15/15/304 Lauffer, 1987, Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and Design, Chem. Rev., 87, 901, 10.1021/cr00081a003 Leergaard, 2003, In vivo tracing of major rat brain pathways using manganese‐enhanced magnetic resonance imaging and three‐dimensional digital atlasing, Neuroimage, 20, 1591, 10.1016/j.neuroimage.2003.07.009 Liu, 2004, Direct CSF injection of MnCl2 for dynamic manganese‐enhanced MRI, Mag. Res. Med., 51, 978, 10.1002/mrm.20047 Louie, 2002, Mapping gene expression by MRI, 819 Louie, 2000, Recent advances in MRI:Novel contrast agents shed light on in vivo biochemistry, New Technologies in the Life Sciences: A Trends Guide,, 7 Modo, 2002, Tracking transplanted stem cell migration using bifunctional, contrast agent‐enhanced, magnetic resonance imaging, Neuroimage, 17, 803, 10.1006/nimg.2002.1194 Modo, 2003, Mapping transplanted stem cell migration after a stroke: A serial, in vivo magnetic resonance imaging study, Neuroimage, 21, 311, 10.1016/j.neuroimage.2003.08.030 Modo, 2003, MRI and novel contrast agents for molecular imaging, 293 Paul, 2004, Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides, Bioconj. Chem., 15, 394, 10.1021/bc034194u Pautler, 2003, The year(s) of the contrast agent‐microMRI in the new millenium, Curr. Opin. Immunol., 15, 385, 10.1016/S0952-7915(03)00073-6 Pautler, 2002, Tracing odor‐induced activation in the olfactory bulbs of mice using manganese‐enhanced magnetic resonance imaging, Neuroimage, 16, 441, 10.1006/nimg.2002.1075 Pautler, 2003, In vivo trans‐synaptic tract tracing from the murine striatum and amygdala utlizing manganese enhanced MRI (MEMRI), Mag. Res. Med., 50, 33, 10.1002/mrm.10498 Pautler, 1998, In vivo neuronal tract tracing using manganese‐enhanced magnetic resonance imaging, Mag. Res. Med., 40, 740, 10.1002/mrm.1910400515 Rickers, 2004, Applications of magnetic resonance imaging for cardiac cell therapy, J. Interv. Cardiol., 17, 37, 10.1111/j.1540-8183.2004.01712.x Saleem, 2002, Magnetic resonance imaging of neuronal connections in the macaque monkey, Neurotechnique, 34, 685 Smith, 1992, MR Microscopy of chick embryo vasculature, JMRI, 2, 237, 10.1002/jmri.1880020220 Smith, 1999, Magnetic resonance imaging of embryos: And Internet resource for the study of embryonic development, Comput. Medi. Imag. Graph., 23, 33, 10.1016/S0895-6111(98)00061-5 Smith, 1996, Magnetic Resonance Microscopy of Embryos, Comput. Med. Imag. Graph., 20, 482, 10.1016/S0895-6111(96)00046-8 Snoussi, 2003, Sensitive CEST agents based on nucleic acid imino proton exchange: Detection of poly(rU) and of a dendrimer‐poly(rU) model for nucleic acid delivery and pharmacology, Magn. Reson. Med., 49, 998, 10.1002/mrm.10463 Terreno, 2004, Ln(III)‐DOTAMGly complexes: A versatile series to assess the determinants of efficacy for paramagnetic chemical exchange saturation transfer agents for magnetic resonance imaging applications, Invest. Radiol., 39, 235, 10.1097/01.rli.0000116607.26372.d0 Tindemans, 2003, In vivo dynamic ME‐MRI reveals differential functional responses of RA‐ and area X‐projecting neurons in the HVC of canaries exposed to conspecific song, Eur. J. Neurosci., 18, 3352, 10.1111/j.1460-9568.2003.03056.x Tweedle, 1992, Physicochemical properties of gadoteridol and other magnetic resonance contrast agents, Invest. Radiol., 27, S2, 10.1097/00004424-199208001-00002 Walter, 2004, Noninvasive monitoring of stem cell transfer for muscle disorders, Magn. Reson. Med., 51, 273, 10.1002/mrm.10684 Ward, 2000, A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST), J. Mag. Res., 143, 79, 10.1006/jmre.1999.1956 Ward, 2000, Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST), Mag. Res. Med., 44, 799, 10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S Watanabe, 2001, Mapping of retinal projections in the living rat using high‐resolution 3D gradient‐echo MRI with Mn2+ ‐induced contrast, Mag. Res. Med., 46, 424, 10.1002/mrm.1209 Watanabe, 2002, In vivo 3D MRI staining of mouse brain after subcutaneous application of MnCl2, Mag. Res. Med., 48, 852, 10.1002/mrm.10276 Yeh, 1995, In vivo dynamic MRI tracking of rat T‐cells labeled with superparamagnetic iron‐oxide particles, Mag. Res. Med., 33, 200, 10.1002/mrm.1910330209 Zhang, 2003, PARACEST agents:Modulating MRI contrast via water proton exchange, Acc. Chem. Res., 36, 783, 10.1021/ar020228m Zhang, 2002, The amine protons of an ytterbium(III)dota tetraamide complex act as efficient antennae for transfer of magnetization to bulk water, Angew. Chem. Int. Ed. Engl., 41, 1919, 10.1002/1521-3773(20020603)41:11<1919::AID-ANIE1919>3.0.CO;2-Q Zhang, 2003, Physical characteristics of lanthanide complexes that act as magnetization transfer (MT) contrast agents, J. Solid State Chem., 171, 38, 10.1016/S0022-4596(02)00143-3 Zhang, 2003, A paramagnetic CEST agent for imaging glucose by MRI, JACS, 50, 15288, 10.1021/ja038345f Zhang, 2001, A novel europium(III)‐based MRI contrast agent, JACS, 123, 1517, 10.1021/ja005820q Zhang, 1999, A novel pH sensitive MRI contrast agent, Angew. Chem. Int. Ed. Engl., 38, 3192, 10.1002/(SICI)1521-3773(19991102)38:21<3192::AID-ANIE3192>3.0.CO;2-# Zhang, 2003, Improved preparation of chick embryonic samples for magnetic resonance microscopy, Mag. Res. Med., 49, 1192, 10.1002/mrm.10460 Zhou, 2003, Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI, Nat. Med., 9, 1085, 10.1038/nm907 Arbab, 2004, Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI, Blood, 104, 1217, 10.1182/blood-2004-02-0655 Chew, 2001, The effects of 1.5T magnetic resonance imaing on early murine in‐vitro embryo development, J. Mag. Res. Imaging, 13, 417, 10.1002/jmri.1060 DaldrupLink, 2004, Cell tracking with gadophrin‐2: A bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy, Eur. J. Nuc. Med. Mol. Imaging, 31, 1313, 10.1007/s00259-004-1484-2 Fleige, 2002, In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking, Invest. Radiol., 37, 482, 10.1097/00004424-200209000-00002 Halpern, 1987, The organization and function of the vomeronasal system, Ann. Rev. Neurosci., 10, 325, 10.1146/annurev.ne.10.030187.001545 Hinds, 2003, Highly efficient edosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells, Blood, 102, 867, 10.1182/blood-2002-12-3669 Josephson, 1999, High‐efficiency intracellular magnetic labeling with novel superparamagnetic‐Tat peptide conjugates, Bioconj. Chem., 10, 186, 10.1021/bc980125h Kircher, 2003, In vivo high resolution three‐dimensional imaging of antigen‐specific cytotoxic T‐cell lymphocyte tracking to tumors, Cancer Res., 63, 6838 Lee, 2001, One micrometer resolution NMR microscopy, J. Mag. Res., 150, 207, 10.1006/jmre.2001.2319 Lu, 2002, Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol‐gel approach, Nano Lett., 2, 183, 10.1021/nl015681q