Maftools: efficient and comprehensive analysis of somatic variants in cancer

Genome Research - Tập 28 Số 11 - Trang 1747-1756 - 2018
Anand Mayakonda1,2, De–Chen Lin3, Yassen Assenov2,4, Christoph Plass2,4, H. Phillip Koeffler1,3,5
11Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
22Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
33Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
44German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
55National University Cancer Institute, National University Hospital, 119074, Singapore

Tóm tắt

Numerous large-scale genomic studies of matched tumor-normal samples have established the somatic landscapes of most cancer types. However, the downstream analysis of data from somatic mutations entails a number of computational and statistical approaches, requiring usage of independent software and numerous tools. Here, we describe an R Bioconductor package, Maftools, which offers a multitude of analysis and visualization modules that are commonly used in cancer genomic studies, including driver gene identification, pathway, signature, enrichment, and association analyses. Maftools only requires somatic variants in Mutation Annotation Format (MAF) and is independent of larger alignment files. With the implementation of well-established statistical and computational methods, Maftools facilitates data-driven research and comparative analysis to discover novel results from publicly available data sets. In the present study, using three of the well-annotated cohorts from The Cancer Genome Atlas (TCGA), we describe the application of Maftools to reproduce known results. More importantly, we show that Maftools can also be used to uncover novel findings through integrative analysis.

Từ khóa


Tài liệu tham khảo

10.1038/nature12477

10.1016/j.celrep.2012.12.008

10.1002/gcc.20511

10.1073/pnas.0308531101

10.1038/nature11252

10.1038/nature11412

10.1056/NEJMoa1301689

10.1038/nature20805

10.1113/jphysiol.2011.224204

10.1158/2159-8290.CD-12-0095

2016, Kataegis expression signature in breast cancer is associated with late onset, better prognosis, and higher HER2 levels, Cell Rep, 16, 672, 10.1016/j.celrep.2016.06.026

10.1101/gr.134635.111

10.1038/nrg3767

10.1038/ng.2591

2018, Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines, Cell Syst, 6, 271, 10.1016/j.cels.2018.03.002

2014, ErbB targeting inhibitors repress cell migration of esophageal squamous cell carcinoma and adenocarcinoma cells by distinct signaling pathways, J Mol Med (Berl), 92, 1209, 10.1007/s00109-014-1187-5

10.1186/gb-2013-14-4-r39

10.1007/s10555-006-9017-z

10.1186/1471-2105-11-367

10.1186/gb-2004-5-10-r80

10.1093/nar/gks743

10.1093/bioinformatics/btw313

2016, Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma, Nat Genet, 48, 1500, 10.1038/ng.3683

10.1016/S1097-2765(02)00742-6

10.1038/nrg3729

2015, Voltage-gated Na+ channel activity increases colon cancer transcriptional activity and invasion via persistent MAPK signaling, Sci Rep, 5, 11541, 10.1038/srep11541

10.1038/nature01580

10.1186/1476-4598-10-17

10.18637/jss.v058.i03

10.1038/ng.3557

10.1186/1745-6150-7-47

10.1371/journal.pcbi.1003118

10.1038/nature12213

10.1038/nature12912

10.1186/s13059-015-0700-7

10.1038/ng.2935

10.1136/gutjnl-2017-314607

2018, Genomic and epigenomic aberrations in esophageal squamous cell carcinoma and implications for patients, Gastroenterology, 154, 374, 10.1053/j.gastro.2017.06.066

10.1093/hmg/ddp396

10.1158/1078-0432.CCR-10-0821

10.1186/gb-2011-12-4-r41

10.1016/j.cell.2012.04.024

10.1093/biostatistics/kxh008

10.1073/pnas.2637169100

10.1309/AJCPD7NR2RMNQDVF

R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ .

10.1038/ng.2702

10.1186/s13059-016-0893-4

10.1007/s00232-005-0782-3

2016, Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance, Nat Genet, 48, 1131, 10.1038/ng.3659

10.1158/2159-8290.CD-15-0344

10.1002/gcc.10246

10.1093/bioinformatics/btt395

10.7554/eLife.00534

10.1101/gr.120477.111

10.1126/science.1235122

10.1093/bioinformatics/btr193

10.1101/gr.157602.113

10.1038/ng.788

10.1096/fj.08-108985

2017, Signatures of positive selection reveal a universal role of chromatin modifiers as cancer driver genes, Sci Rep, 7, 13124, 10.1038/s41598-017-12888-1