Macrophage inhibits the osteogenesis of fibroblasts in ultrahigh molecular weight polyethylene (UHMWPE) wear particle-induced osteolysis

Journal of Orthopaedic Surgery and Research - Tập 14 - Trang 1-7 - 2019
Pengfei Lei1, Zixun Dai2, Yu Shrike Zhang3, Hua Liu4,5,6, Wanting Niu7,8, Kun Li1, Long Wang1, Yihe Hu1, Jie Xie1
1Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, People’s Republic of China
2Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, People’s Republic of China
3Centre for Biomaterials Innovation, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, USA
4Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
5Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, People’s Republic of China
6Harvard-MIT Division of Health Sciences and Technology, Tissue Engineering Lab, Cambridge, USA
7VA Boston Healthcare System, West Roxbury, USA
8Department of Orthopedics, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, USA

Tóm tắt

In the ultrahigh molecular weight polyethylene (UHMWPE) prosthetic environment, fibroblasts affected by wear particles have the capacity of osteogenesis to reduce osteolysis. We aimed to assess the effects of macrophages on the osteogenic capability of fibroblasts treated with UHMWPE wear particles. The effect of different concentrations of UHMWPE (0, 0.01, 0.1, and 1 mg/ml, respectively) on macrophage proliferation were validated by MTT assay to determine the optimum one. The fibroblasts viability was further determined in the co-culture system of UHMWPE particles and macrophage supernatants. The experiment was designed as seven groups: (A) fibroblasts only; (B) fibroblasts + 1 mg/ml UHMWPE particles; and (C1–C5) fibroblasts + 1/16, 1/8, 1/4, 1/2, and 1/1 supernatants of macrophage cultures stimulated by 1 mg/ml UHMWPE particles vs. fibroblast complete media, respectively. Alizarin red staining was used to detect calcium accumulation. The expression levels of osteogenic proteins were detected by Western blot and ELISA, including alkaline phosphatase (ALP) and osteocalcin (OCN). The concentration of 0.1 mg/ml was considered as the optimum concentration for macrophage proliferation due to the survival rate and was highest among the four concentrations. Fibroblast viability was better in the group of fibroblasts + 1/16 ratio of macrophage supernatants stimulated by 1 mg/ml of UHMWPE particles than the other groups (1:8, 1:4, 1:2, 1:1). ALP and OCN expressions were significantly decreased in the group of fibroblasts + 1/4, 1/2, and 1/1 supernatants stimulated by 1 mg/ml of UHMWPE particles compared with other groups (1/8, 1/16) and the group of fibroblasts + 1 mg/ml UHMWPE (p < 0.5). Macrophages are potentially involved in the periprosthetic osteolysis by reducing the osteogenic capability of fibroblasts treated with wear particles generated from UHMWPE materials in total hip arthroplasty.

Tài liệu tham khảo

Purdue PE, Koulouvaris P, Nestor BJ, Sculco TP. The central role of wear debris in periprosthetic osteolysis. HSS J. 2006;2(2):102–13. Patel AK, Trivedi P, Balani K. Processing and mechanical characterization of compression-molded ultrahigh molecular weight polyethylene biocomposite reinforced with aluminum oxide. J NanoScience, NanoEngineering and Applications. 2014;4(3):1–11. Gallo J, Goodman SB, Konttinen YT, Raska M. Particle disease: biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun. 2013;19(2):213–24. Koreny T, Tunyogi-Csapó M, Gál I, Vermes C, Jacobs JJ, Glant TT. The role of fibroblasts and fibroblast-derived factors in periprosthetic osteolysis. Arthritis Rheum. 2006;54(10):3221–32. Tunyogi-Csapo M, Koreny T, Vermes C, Galante JO, Jacobs JJ, Glant TT. Role of fibroblasts and fibroblast-derived growth factors in periprosthetic angiogenesis. J Orthop Res. 2007;25(10):1378–88. Rakshit DS, Ly K, Sengupta TK, Nestor BJ, Sculco TP, Ivashkiv LB, et al. Wear debris inhibition of anti-osteoclastogenic signaling by interleukin-6 and interferon-gamma. Mechanistic insights and implications for periprosthetic osteolysis. J Bone Joint Surg Am. 2006;88(4):788–99. Wright TM. CORR insights(®): periprosthetic UHMWPE wear debris induces inflammation, vascularization, and innervation after total disc replacement in the lumbar spine. Clin Orthop Relat Res. 2017;475(5):1369–81. Jonitz-Heincke A, Lochner K, Schulze C, Pohle D, Pustlauk W, Hansmann D, et al. Contribution of human osteoblasts and macrophages to bone matrix degradation and proinflammatory cytokine release after exposure to abrasive endoprosthetic wear particles. Mol Med Rep. 2016;14(2):1491–500. Bladen CL, Tzu-Yin L, Fisher J, Tipper JL. In vitro analysis of the cytotoxic and anti-inflammatory effects of antioxidant compounds used as additives in ultra high-molecular weight polyethylene in total joint replacement components. Journal of biomedical materials research Part B, Applied biomaterials. 2013;101(3):407–13. Lin T, Goodman SB. Suppression of NF-κB signaling mitigates polyethylene wear particle-induced inflammatory response. Inflamm Cell Signal. 2014;1(4):319–25. Loi F, Córdova LA, Zhang R, Pajarinen J, Lin T-h, Goodman SB, et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res Ther. 2016;7(1):1–11. Tu M-G, Chen Y-W, Shie M-Y. Macrophage-mediated osteogenesis activation in co-culture with osteoblast on calcium silicate cement. J Mater Sci Mater Med. 2015;26(12):1–10. Neuerburg C, Loer T, Mittlmeier L, Polan C, Farkas Z, Holdt LM, et al. Impact of vitamin E-blended UHMWPE wear particles on the osseous microenvironment in polyethylene particle-induced osteolysis. International journal of molecular medicine. 2016;38(6):1652–60. Alias E, Dharmapatni A, Holding A, Atkins G, Findlay D, Howie D, et al. Polyethylene particles stimulate expression of ITAM-related molecules in peri-implant tissues and when stimulating osteoclastogenesis in vitro. Acta Biomater. 2012;8(8):3104–12. Dai Z, Lei P, Zhang YS, Liu H, Niu W, Li K, et al. Effect of stimulation by ultrahigh molecular weight polyethylene wear particles on the osteogenesis capability of fibroblasts. J Biomater Tissue Eng. 2018;8(5):723–30. Zhang Y, Böse T, Unger RE, Jansen JA, Kirkpatrick CJ, van den Beucken JJJP. Macrophage type modulates osteogenic differentiation of adipose tissue MSCs. Cell and tissue research. 2017;369(2):273–86. Li T, Li H, Wang Y, Li T, Fan J, Xiao K, et al. microRNA-23a inhibits osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting LRP5. Int J Biochem Cell Biol. 2016;72:55–62. Wang H, He X-Q, Jin T, Li Y, Fan X-Y, Wang Y, et al. Wnt11 plays an important role in the osteogenesis of human mesenchymal stem cells in a PHA/FN/ALG composite scaffold: possible treatment for infected bone defect. Stem Cell Res Ther. 2016;7(1):1. Hwang NS, Varghese S, Lee HJ, Zhang Z, Elisseeff J. Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem cells. Tissue Eng A. 2013;19(15–16):1723–32. Wang C-T, Lin Y-T, Chiang B-L, Lee S-S, Hou S-M. Over-expression of receptor activator of nuclear factor-κB ligand (RANKL), inflammatory cytokines, and chemokines in periprosthetic osteolysis of loosened total hip arthroplasty. Biomaterials. 2010;31(1):77–82. Beck RT, Illingworth KD, Saleh KJ. Review of periprosthetic osteolysis in total joint arthroplasty: an emphasis on host factors and future directions. J Orthop Res. 2012;30(4):541–6. Chiu R, Ma T, Smith RL, Goodman SB. Ultrahigh molecular weight polyethylene wear debris inhibits osteoprogenitor proliferation and differentiation in vitro. J Biomed Mater Res A. 2009;89(1):242–7. Jiang Y, Jia T, Wooley PH, Yang S-Y. Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris. Acta Orthop Belg. 2013;79(1):1–9. Green JM, Hallab NJ, Liao Y-S, Narayan V, Schwarz EM, Xie C. Anti-oxidation treatment of ultra high molecular weight polyethylene components to decrease periprosthetic osteolysis: evaluation of osteolytic and osteogenic properties of wear debris particles in a murine calvaria model. Curr Rheumatol Rep. 2013;15(5):1–5. Agarwal S. Osteolysis—basic science, incidence and diagnosis. Curr Orthop. 2004;18(3):220–31. Goodman SB. Wear particles, periprosthetic osteolysis and the immune system. Biomaterials. 2007;28(34):5044–8. Laurent MP, Johnson TS, Crowninshield RD, Blanchard CR, Bhambri SK, Yao JQ. Characterization of a highly cross-linked ultrahigh molecular-weight polyethylene in clinical use in total hip arthroplasty. J Arthroplast. 2008;23(5):751–61. Oral E, Malhi AS, Wannomae KK, Muratoglu OK. Highly cross-linked ultrahigh molecular weight polyethylene with improved fatigue resistance for total joint arthroplasty: recipient of the 2006 Hap Paul Award. J Arthroplast. 2008;23(7):1037–44. Matthews J, Mitchell W, Stone M, Fisher J, Ingham E. A novel three-dimensional tissue equivalent model to study the combined effects of cyclic mechanical strain and wear particles on the osteolytic potential of primary human macrophages in vitro. Proc Inst Mech Eng H J Eng Med. 2001;215(5):479–86. Haynes D, Crotti T, Potter A, Loric M, Atkins G, Howie D, et al. The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J Bone Joint Surg, Br. 2001;83(6):902–11. Alley C, Haggard W, Smith R. Effect of UHMWPE particle size, dose, and endotoxin on in vitro macrophage response. J Long-Term Eff Med Implants. 2014;24(1):45–56. Zaveri TD, Dolgova NV, Lewis JS, Hamaker K, Claresalzler MJ, Keselowsky BG. Macrophage integrins modulate response to ultra-high molecular weight polyethylene particles and direct particle-induced osteolysis. Biomaterials. 2017;115:128–40. Ren PG, Irani A, Huang Z, Ma T, Biswal S, Goodman SB. Continuous infusion of UHMWPE particles induces increased bone macrophages and osteolysis. Clin Orthop Relat Res®. 2011;469(1):113–22. Lin T-h, Yao Z, Sato T, Keeney M, Li C, Pajarinen J, et al. Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: a preliminary report. Acta Biomater. 2014;10(8):3747–55. Goodman SB, Gibon E, Pajarinen J, Lin TH, Keeney M, Ren PG, et al. Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J R Soc Interface. 2014;11(93):20130962. Zhang X, Zhang Y, Zhang X, Wang Y, Wang J, Lu M, et al. Mechanical properties and cytocompatibility of carbon fibre reinforced nano-hydroxyapatite/polyamide66 ternary biocomposite. J Mech Behav Biomed Mater. 2015;42(42C):267–73. Wang J, Tao Y, Ping Z, Wen Z, Hu X, Wang Y, et al. Icariin attenuates titanium-particle inhibition of bone formation by activating the Wnt/β-catenin signaling pathway in vivo and in vitro. Sci Rep. 2016;6:23827.