Macrophage activation state determines the response to rhinovirus infection in a mouse model of allergic asthma

Respiratory Research - Tập 15 - Trang 1-15 - 2014
Jun Young Hong1, Yutein Chung2, Jessica Steenrod2, Qiang Chen2, Jing Lei2, Adam T Comstock2, Adam M Goldsmith2, J Kelley Bentley2, Uma S Sajjan2, Marc B Hershenson1,2,3
1Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
2Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, USA
3Medical Sciences Research Building II, Ann Arbor, USA

Tóm tắt

The mechanisms by which viruses cause asthma exacerbations are not precisely known. Previously, we showed that, in ovalbumin (OVA)-sensitized and -challenged mice with allergic airway inflammation, rhinovirus (RV) infection increases type 2 cytokine production from alternatively-activated (M2) airway macrophages, enhancing eosinophilic inflammation and airways hyperresponsiveness. In this paper, we tested the hypothesis that IL-4 signaling determines the state of macrophage activation and pattern of RV-induced exacerbation in mice with allergic airways disease. Eight week-old wild type or IL-4 receptor knockout (IL-4R KO) mice were sensitized and challenged with OVA and inoculated with RV1B or sham HeLa cell lysate. In contrast to OVA-treated wild-type mice with both neutrophilic and eosinophilic airway inflammation, OVA-treated IL-4R KO mice showed increased neutrophilic inflammation with few eosinophils in the airways. Like wild-type mice, IL-4R KO mice showed OVA-induced airway hyperreactivity which was further exacerbated by RV. There was a shift in lung cytokines from a type 2-predominant response to a type 1 response, including production of IL-12p40 and TNF-α. IL-17A was also increased. RV infection of OVA-treated IL-4R KO mice further increased neutrophilic inflammation. Bronchoalveolar macrophages showed an M1 polarization pattern and ex vivo RV infection increased macrophage production of TNF-α, IFN-γ and IL-12p40. Finally, lung cells from OVA-treated IL-4R KO mice showed reduced CD206+ CD301+ M2 macrophages, decreased IL-13 and increased TNF-α and IL-17A production by F4/80+, CD11b+ macrophages. OVA-treated IL-4R KO mice show neutrophilic airway inflammation constituting a model of allergic, type 1 cytokine-driven neutrophilic asthma. In the absence of IL-4/IL-13 signaling, RV infection of OVA-treated mice increased type 1 cytokine and IL-17A production from conventionally-activated macrophages, augmenting neutrophilic rather than eosinophilic inflammation. In mice with allergic airways inflammation, IL-4R signaling determines macrophage activation state and the response to subsequent RV infection.

Tài liệu tham khảo

Loke PN, Nair M, Parkinson J, Guiliano D, Blaxter M, Allen J: IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol. 2002, 3: 7-10.1186/1471-2172-3-7. Muller U, Stenzel W, Kohler G, Werner C, Polte T, Hansen G, Schutze N, Straubinger RK, Blessing M, McKenzie AN, Brombacher F, Alber G: IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J Immunol. 2007, 179: 5367-5377. 10.4049/jimmunol.179.8.5367. Ford A, Dasgupta P, Mikhailenko I, Smith E, Noben-Trauth N, Keegan A: Adoptive transfer of IL-4Ralpha + macrophages is sufficient to enhance eosinophilic inflammation in a mouse model of allergic lung inflammation. BMC Immunol. 2012, 13: 6-10.1186/1471-2172-13-6. Melgert BN, ten Hacken NH, Rutgers B, Timens W, Postma DS, Hylkema MN: More alternative activation of macrophages in lungs of asthmatic patients. J Allergy Clin Immunol. 2011, 127: 831-833. 10.1016/j.jaci.2010.10.045. Message SD, Laza-Stanca V, Mallia P, Parker HL, Zhu J, Kebadze T, Contoli M, Sanderson G, Kon OM, Papi A, Jeffery PK, Stanciu LA, Johnston SL: Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proc Natl Acad Sci U S A. 2008, 105: 13562-13567. 10.1073/pnas.0804181105. Nagarkar DR, Bowman ER, Schneider D, Wang Q, Shim J, Zhao Y, Linn MJ, McHenry CL, Gosangi B, Bentley JK, Tsai WC, Sajjan US, Lukacs NW, Hershenson MB: Rhinovirus infection of allergen-sensitized and -challenged mice induces eotaxin release from functionally polarized macrophages. J Immunol. 2010, 185: 2525-2535. 10.4049/jimmunol.1000286. Newcomb DC, Sajjan U, Nanua S, Jia Y, Goldsmith AM, Bentley JK, Hershenson MB: Phosphatidylinositol 3-kinase is required for rhinovirus-induced airway epithelial cell interleukin-8 expression. J Biol Chem. 2005, 280: 36952-36961. 10.1074/jbc.M502449200. Schneider D, Hong JY, Popova AP, Bowman ER, Linn MJ, McLean AM, Zhao Y, Sonstein J, Bentley JK, Weinberg JB, Lukacs NW, Curtis JL, Sajjan US, Hershenson MB: Neonatal rhinovirus infection induces mucous metaplasia and airways hyperresponsiveness. J Immunol. 2012, 188: 2894-2904. 10.4049/jimmunol.1101391. Weischenfeldt J, Porse B: Bone marrow-derived macrophages (BMM): isolation and applications. Cold Spring Harb Protoc. 2008, 2008: pdb.prot5080- Laan M, Cui ZH, Hoshino H, Lotvall J, Sjostrand M, Gruenert DC, Skoogh BE, Linden A: Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol. 1999, 162: 2347-2352. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK: Requirement of interleukin 17 receptor signaling for lung CXC Chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 2001, 194: 519-528. 10.1084/jem.194.4.519. Jones CE, Chan K: Interleukin-17 Stimulates the expression of interleukin-8, growth-related oncogene-α, and granulocyte–colony-stimulating factor by human airway epithelial Cells. Am J Respir Cell Mol Biol. 2002, 26: 748-753. 10.1165/ajrcmb.26.6.4757. Chen Y, Thai P, Zhao Y-H, Ho Y-S, DeSouza MM, Wu R: Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem. 2003, 278: 17036-17043. 10.1074/jbc.M210429200. Ferretti S, Bonneau O, Dubois GR, Jones CE, Trifilieff A: IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol. 2003, 170: 2106-2112. 10.4049/jimmunol.170.4.2106. Shahrara S, Pickens SR, Mandelin AM, Karpus WJ, Huang Q, Kolls JK, Pope RM: IL-17–mediated monocyte migration occurs partially through CC chemokine ligand 2/monocyte chemoattractant protein-1 induction. J Immunol. 2010, 184: 4479-4487. 10.4049/jimmunol.0901942. Chen K, Pociask DA, McAleer JP, Chan YR, Alcorn JF, Kreindler JL, Keyser MR, Shapiro SD, Houghton AM, Kolls JK, Zheng M: IL-17RA is required for CCL2 expression, macrophage recruitment, and emphysema in response to cigarette smoke. PLoS One. 2011, 6: e20333-10.1371/journal.pone.0020333. Newcomb DC, Sajjan US, Nagarkar DR, Wang Q, Nanua S, Zhou Y, McHenry CL, Hennrick KT, Tsai WC, Bentley JK, Lukacs NW, Johnston SL, Hershenson MB: Human rhinovirus 1B exposure induces phosphatidylinositol 3-kinase-dependent airway inflammation in mice. Am J Respir Crit Care Med. 2008, 177: 1111-1121. 10.1164/rccm.200708-1243OC. Ordonez CL, Shaughnessy TE, Matthay MA, Fahy JV: Increased Neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma: clinical and biologic significance. Am J Respir Crit Care Med. 2000, 161: 1185-1190. 10.1164/ajrccm.161.4.9812061. Griffin GK, Newton G, Tarrio ML, Bu D-x, Maganto-Garcia E, Azcutia V, Alcaide P, Grabie N, Luscinskas FW, Croce KJ, Lichtman AH: IL-17 and TNF-α sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012, 188: 6287-6299. 10.4049/jimmunol.1200385. Lin KL, Suzuki Y, Nakano H, Ramsburg E, Gunn MD: CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J Immunol. 2008, 180: 2562-2572. 10.4049/jimmunol.180.4.2562. Tighe RM, Liang J, Liu N, Jung Y, Jiang D, Gunn MD, Noble PW: Recruited exudative macrophages selectively produce CXCL10 after noninfectious lung injury. Am J Respir Cell Mol Biol. 2011, 45: 781-788. 10.1165/rcmb.2010-0471OC. Winther B, Farr B, Turner RB, Hendley JO, Gwaltney JM, Mygind N: Histopathologic examination and enumeration of polymorphonuclear leukocytes in the nasal mucosa during experimental rhinovirus colds. Acta Otolaryngol Suppl. 1984, 413: 19-24. Fraenkel DJ, Bardin PG, Sanderson G, Lampe F, Johnston SL, Holgate ST: Lower airways inflammation during rhinovirus colds in normal and in asthmatic subjects. Am J Respir Crit Care Med. 1995, 151: 879-886. Gern JE, Dick EC, Lee WM, Murray S, Meyer K, Handzel ZT, Busse WW: Rhinovirus enters but does not replicate inside monocytes and airway macrophages. J Immunol. 1996, 156: 621-627. Stöckl J, Vetr H, Majdic O, Zlabinger G, Kuechler E, Knapp W: Human major group rhinoviruses downmodulate the accessory function of monocytes by inducing IL-10. J Clin Invest. 1999, 104: 957-965. 10.1172/JCI7255. Laza-Stanca V, Stanciu LA, Message SD, Edwards MR, Gern JE, Johnston SL: Rhinovirus replication in human macrophages induces NF-{kappa}B-dependent tumor necrosis factor alpha production. J Virol. 2006, 80: 8248-8258. 10.1128/JVI.00162-06. Hall DJ, Bates ME, Guar L, Cronan M, Korpi N, Bertics PJ: The role of p38 MAPK in rhinovirus-induced monocyte chemoattractant protein-1 production by monocytic-lineage cells. J Immunol. 2005, 174: 8056-8063. 10.4049/jimmunol.174.12.8056. Korpi-Steiner NL, Bates ME, Lee W-M, Hall DJ, Bertics PJ: Human rhinovirus induces robust IP-10 release by monocytic cells, which is independent of viral replication but linked to type I interferon receptor ligation and STAT1 activation. J Leukoc Biol. 2006, 80: 1364-1374. 10.1189/jlb.0606412. Johnston SL, Papi A, Monick MM, Hunninghake GW: Rhinoviruses induce interleukin-8 mRNA and protein production in human monocytes. J Infect Dis. 1997, 175: 323-329. 10.1093/infdis/175.2.323. Khaitov MR, Laza-Stanca V, Edwards MR, Walton RP, Rohde G, Contoli M, Papi A, Stanciu LA, Kotenko SV, Johnston SL: Respiratory virus induction of alpha-, beta- and lambda-interferons in bronchial epithelial cells and peripheral blood mononuclear cells. Allergy. 2009, 64: 375-386. 10.1111/j.1398-9995.2008.01826.x. Schreiber MT, Schuler B, Li L, Hall DJ: Activation of the small G-protein Rac by human rhinovirus attenuates the TLR3/IFN-α axis while promoting CCL2 release in human monocyte-lineage cells. Innate Immun. 2013, 19: 278-289. 10.1177/1753425912460709. Karta MR, Wickert LE, Curran CS, Gavala ML, Denlinger LC, Gern JE, Bertics PJ: Allergen challenge in vivo alters rhinovirus-induced chemokine secretion from human airway macrophages. J Allergy Clin Immunol. 2014, 133: 1227-1230. 10.1016/j.jaci.2014.01.003. e1224 Bentley JK, Sajjan US, Dzaman MB, Jarjour NN, Lee W-M, Gern JE, Hershenson MB: Rhinovirus colocalizes with CD68- and CD11b-positive macrophages following experimental infection in humans. J Allergy Clin Immunol. 2013, 132: 758-761. 10.1016/j.jaci.2013.04.020. e753 Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD: Interleukin-13: central mediator of allergic asthma. Science. 1998, 282: 2258-2261. Kelly-Welch AE, Melo MEF, Smith E, Ford AQ, Haudenschild C, Noben-Trauth N, Keegan AD: Complex role of the IL-4 receptor α in a murine model of airway inflammation: expression of the IL-4 receptor α on nonlymphoid cells of bone marrow origin contributes to severity of inflammation. J Immunol. 2004, 172: 4545-4555. 10.4049/jimmunol.172.7.4545. Dasgupta P, Chapoval S, Smith E, Keegan A: Transfer of in vivo primed transgenic T cells supports allergic lung inflammation and FIZZ1 and Ym1 production in an IL-4Ralpha and STAT6 dependent manner. BMC Immunol. 2011, 12: 60-10.1186/1471-2172-12-60. Shirey KA, Pletneva LM, Puche AC, Keegan AD, Prince GA, Blanco JCG, Vogel SN: Control of RSV-induced lung injury by alternatively activated macrophages is IL-4Rα-, TLR4-, and IFN-β-dependent. Mucosal Immunol. 2010, 3: 291-300. 10.1038/mi.2010.6. Arora S, Olszewski MA, Tsang TM, McDonald RA, Toews GB, Huffnagle GB: Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with Cryptococcus neoformans. Infect Immun. 2011, 79: 1915-1926. 10.1128/IAI.01270-10. Hardison SE, Herrera G, Young ML, Hole CR, Wozniak KL, Wormley FL: Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation. J Immunol. 2012, 189: 4060-4068. 10.4049/jimmunol.1103455. Müller U, Stenzel W, Piehler D, Grahnert A, Protschka M, Köhler G, Frey O, Held J, Richter T, Eschke M, Kamradt T, Brombacher F, Alber G: Abrogation of IL-4 receptor-α-dependent alternatively activated macrophages is sufficient to confer resistance against pulmonary cryptococcosis despite an ongoing Th2 response. Int Immunol. 2013, 25: 459-470. 10.1093/intimm/dxt003. Potian JA, Rafi W, Bhatt K, McBride A, Gause WC, Salgame P: Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J Exp Med. 2011, 208: 1863-1874. 10.1084/jem.20091473. Page C, Goicochea L, Matthews K, Zhang Y, Klover P, Holtzman MJ, Hennighausen L, Frieman M: Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J Virol. 2012, 86: 13334-13349. 10.1128/JVI.01689-12. Wang Q, Miller DJ, Bowman ER, Nagarkar DR, Schneider D, Zhao Y, Linn MJ, Goldsmith AM, Bentley JK, Sajjan US, Hershenson MB: MDA5 and TLR3 initiate pro-inflammatory signaling pathways leading to rhinovirus-induced airways inflammation and hyperresponsiveness. PLoS Pathog. 2011, 7: e1002070-10.1371/journal.ppat.1002070. Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage RJ: Human IL-17: a novel cytokine derived from T cells. J Immunol. 1995, 155: 5483-5486. Molet S, Hamid Q, Davoineb F, Nutku E, Tahaa R, Pagé N, Olivenstein R, Elias J, Chakir J: IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol. 2001, 108: 430-438. 10.1067/mai.2001.117929. Song C, Luo L, Lei Z, Li B, Liang Z, Liu G, Li D, Zhang G, Huang B, Feng Z-H: IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J Immunol. 2008, 181: 6117-6124. 10.4049/jimmunol.181.9.6117. Newcomb DC, Zhou W, Moore ML, Goleniewska K, Hershey GKK, Kolls JK, Peebles RS: A functional IL-13 receptor is expressed on polarized murine CD4+ Th17 cells and IL-13 signaling attenuates Th17 cytokine production. J Immunol. 2009, 182: 5317-5321. 10.4049/jimmunol.0803868. Douwes J, Gibson P, Pekkanen J, Pearce N: Non-eosinophilic asthma: importance and possible mechanisms. Thorax. 2002, 57: 643-648. 10.1136/thorax.57.7.643. Fabbri LM, Boschetto P, Zocca E, Milani G, Pivirotto F, Plebani M, Burlina A, Licata B, Mapp CE: Bronchoalveolar neutrophilia during late asthmatic reactions induced by toluene diisocyanate. Am Rev Respir Dis. 1987, 136: 36-42. 10.1164/ajrccm/136.1.36. Martin RJ, Cicutto LC, Smith HR, Ballard RD, Szefler SJ: Airways inflammation in nocturnal asthma. Am Rev Respir Dis. 1991, 143: 143-351. Park HS, Jung KS, Hwang SC, Nahm DH, Yim HE: Neutrophil infiltration and release of IL-8 in airway mucosa from subjects with grain dust-induced occupational asthma. Clin Exp Allergy. 1998, 28: 724-730. 10.1046/j.1365-2222.1998.00299.x. Frew AJ, Chan H, Lam S, Chan-Yeung M: Bronchial inflammation in occupational asthma due to western red cedar. Am J Respir Crit Care Med. 1995, 151: 340-344. 10.1164/ajrccm.151.2.7842189. Jatakanon A, Uasuf C, Maziak W, Lim S, Chung KF, Barnes PJ: Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med. 1999, 160: 1532-1539. 10.1164/ajrccm.160.5.9806170. Pavord ID, Brightling CE, Woltmann G, Wardlaw AJ: Non-eosinophilic cor ticosteroid unresponsive asthma. Lancet. 1999, 353: 2213-2214. 10.1016/S0140-6736(99)01813-9. Chu H, Trudeau J, Balzar S, Wenzel S: Peripheral blood and airway tissue expression of transforming growth factor beta by neutrophils in asthmatic subjects and normal control subjects. J Allergy Clin Immunol. 2000, 106: 1115-1123. 10.1067/mai.2000.110556. Anees W, Huggins V, Pavord ID, Robertson AS, Burge PS: Occupational asthma due to low molecular weight agents: eosinophilic and non-eosinophilic variants. Thorax. 2002, 57: 231-236. 10.1136/thorax.57.3.231. Green RH, Brightling CE, Woltmann G, Parker D, Wardlaw AJ, Pavord ID: Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax. 2002, 57: 875-879. 10.1136/thorax.57.10.875. Okamoto T, Gohil K, Finkelstein EI, Bove P, Akaike T, van der Vliet A: Multiple contributing roles for NOS2 in LPS-induced acute airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 2004, 286: L198-L209. Maris NA, van der Sluijs KF, Florquin S, de Vos AF, Pater JM, Jansen HM, van der Poll T: Salmeterol, a β2-receptor agonist, attenuates lipopolysaccharide-induced lung inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 2004, 286: L1122-L1128. 10.1152/ajplung.00125.2003. Stenfors N, Pourazar J, Blomberg A, Krishna MT, Mudway I, Helleday R, Kelly FJ, Frew AJ, Sandström T: Effect of ozone on bronchial mucosal inflammation in asthmatic and healthy subjects. Respir Med. 2002, 96: 352-358. 10.1053/rmed.2001.1265. Nagarkar DR, Wang Q, Shim J, Zhao Y, Tsai WC, Lukacs NW, Sajjan U, Hershenson MB: CXCR2 is required for neutrophilic airway inflammation and hyperresponsiveness in a mouse model of human rhinovirus infection. J Immunol. 2009, 183: 6698-6707. 10.4049/jimmunol.0900298. McLean GR, Walton RP, Shetty S, Peel TJ, Paktiawal N, Kebadze T, Gogsadze L, Niespodziana K, Valenta R, Bartlett NW, Johnston SL: Rhinovirus infections and immunisation induce cross-serotype reactive antibodies to VP1. Antiviral Res. 2012, 95: 193-201. 10.1016/j.antiviral.2012.06.006. Bartlett NW, Walton RP, Edwards MR, Aniscenko J, Caramori G, Zhu J, Glanville N, Choy KJ, Jourdan P, Burnet J, Tuthill TJ, Pedrick MS, Hurle MJ, Plumpton C, Sharp NA, Bussell JN, Swallow DM, Schwarze J, Guy B, Almond JW, Jeffery PK, Lloyd CM, Papi A, Killington RA, Rowlands DJ, Blair ED, Clarke NJ, Johnston SL: Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med. 2008, 14: 199-204. 10.1038/nm1713. Chen Y, Hamati E, Lee PK, Lee WM, Wachi S, Schnurr D, Yagi S, Dolganov G, Boushey H, Avila P, Wu R: Rhinovirus induces airway epithelial gene expression through double-stranded RNA and IFN-dependent pathways. Am J Respir Cell Mol Biol. 2006, 34: 192-203. 10.1165/rcmb.2004-0417OC. Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA, Fraser-Liggett CM, Liggett SB: Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science. 2009, 324: 55-59. 10.1126/science.1165557.