Macroeconomic forecasting and structural change

Journal of Applied Econometrics - Tập 28 Số 1 - Trang 82-101 - 2013
Antonello D’Agostino1, Luca Gambetti2, Domenico Giannone3,4
1CBFSAI, European Central Bank, Frankfurt am Main, Germany
2Departament d' Economia i Història Econòmica, Universitat Autònoma de Barcelona, Spain
3CEPR, London, UK
4Université libre de Bruxelles—ECARES, Brussels, Belgium

Tóm tắt

SUMMARYThe aim of this paper is to assess whether modeling structural change can help improving the accuracy of macroeconomic forecasts. We conduct a simulated real‐time out‐of‐sample exercise using a time‐varying coefficients vector autoregression (VAR) with stochastic volatility to predict the inflation rate, unemployment rate and interest rate in the USA. The model generates accurate predictions for the three variables. In particular, the forecasts of inflation are much more accurate than those obtained with any other competing model, including fixed coefficients VARs, time‐varying autoregressions and the naïve random walk model. The results hold true also after the mid 1980s, a period in which forecasting inflation was particularly hard. Copyright © 2011 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

AmisanoG GewekeJ.2007.Hierarchical Markov normal mixture models with applications to financial asset returns. Working Paper Series 831 European Central Bank.

10.1198/073500106000000332

Atkeson A, 2001, Are Phillips curves useful for forecasting inflation?, Federal Reserve Bank of Minneapolis Quarterly Review, 2

10.1198/073500104000000271

Bates J, 1968, The combination of forecasts, Operational Research Quarterly, 20, 451, 10.1057/jors.1969.103

10.1111/j.1538-4616.2008.00106.x

10.1017/S136510050705033X

10.1016/j.jedc.2008.05.010

10.1093/biomet/81.3.541

10.1162/003355300554692

ClarkTE.2011.Real‐time density forecasts from VARs with stochastic volatility.Journal of Business Economics and Statistics(forthcoming).

10.1002/jae.1127

Cogley T, 2001, Macroeconomics Annual, 331

10.1016/j.red.2004.10.009

10.1016/j.jedc.2005.06.005

10.1257/mac.2.1.43

D'AgostinoA GiannoneD SuricoP.2006.(Un)predictability and macroeconomic stability. Working Paper Series 605 European Central Bank.

10.1080/07474938408800053

10.1257/mac.1.1.26

10.1162/JEEA.2008.6.2-3.621

GiordaniP VillaniM.2009.Forecasting macroeconomic time series with locally adaptive signal extraction. Working Paper Series 234 Sveriges Riksbank (Central Bank of Sweden).

10.1016/j.ijforecast.2009.10.007

Huurman C, 2010, The power of weather, Computational Statistics and Data Analysis

10.1002/jae.1162

10.1111/1467-937X.00050

Mitchell J, 2010, Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness, Journal of Applied Econometrics

10.1016/j.jedc.2006.05.001

10.1111/j.1467-937X.2005.00353.x

Roberts JM, 2006, Monetary policy and inflation dynamics, International Journal of Central Banking, 2, 193

10.1257/aer.90.3.429

RossiB SekhposyanT.2008.Has models' forecasting performance for US output growth and inflation changed over time and when?Manuscript Duke University.

10.3386/w8320

10.2307/1392096

Stock JH, 2004, NBER Macroeconomics Annual 2003, 159

10.1111/j.1538-4616.2007.00014.x

StockJH WatsonMW.2008.Phillips curve inflation forecasts. NBER Working Paper 14322.

StrachanRW van DijkH K.2008.Bayesian averaging over many dynamic model structures with evidence on the great ratios and liquidity trap risk. Tinbergen Institute Discussion Papers 08‐096/4 Tinbergen Institute.