Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đường dẫn MaMAPK3-MaICE1-MaPOD P7, một yếu tố điều chỉnh tích cực khả năng chịu lạnh ở chuối
Tóm tắt
Chuối là một loại trái cây nhiệt đới có tác động kinh tế cao trên toàn cầu. Căng thẳng lạnh ảnh hưởng lớn đến sự phát triển và sản xuất chuối. Trong nghiên cứu này, chúng tôi đã điều tra các chức năng của MaMAPK3 và MaICE1 liên quan đến khả năng chịu lạnh của chuối. Tác động của RNAi MaMAPK3 đối với khả năng chịu lạnh của Dajiao (Musa spp. ‘Dajiao’; nhóm ABB) đã được đánh giá. Lá của các cây chuyển gen RNAi MaMAPK3 cho thấy sự héo úa và biểu hiện các triệu chứng hoại tử nghiêm trọng, trong khi các cây loại dại (WT) vẫn bình thường sau khi tiếp xúc với lạnh. RNAi của MaMAPK3 đã thay đổi đáng kể biểu hiện của các gen phản ứng với lạnh, và hoạt động oxi hóa khử đã thay đổi đáng kể ở các cây WT, trong khi không có thay đổi nào được quan sát ở các cây chuyển gen. MaICE1 tương tác với MaMAPK3, và mức độ biểu hiện của MaICE1 đã giảm đáng kể ở các cây chuyển gen RNAi MaMAPK3. Việc biểu hiện quá mức MaICE1 trong chuối Cavendish (Musa spp. nhóm AAA) cho thấy khả năng chống lạnh của các cây chuyển gen vượt trội hơn so với cây WT. Gen POD P7 đã được tăng cường đáng kể trong các cây chuyển gen biểu hiện quá mức MaICE1 so với các cây WT, và POD P7 đã được chứng minh có sự tương tác với MaICE1. Tổng hợp lại, công trình của chúng tôi đã cung cấp bằng chứng mới và vững chắc rằng con đường MaMAPK3-MaICE1-MaPOD P7 cải thiện tích cực khả năng chịu lạnh ở chuối một lá, mở ra hướng đi cho chọn giống phân tử cho chuối chịu lạnh hoặc các loài nông nghiệp khác.
Từ khóa
#chuối; khả năng chịu lạnh; MaMAPK3; MaICE1; MaPOD P7; RNAiTài liệu tham khảo
D'Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. NATURE. 2012;488(7410):213–7.
Wang Z, Miao H, Liu J, Xu B, Yao X, Xu C, Zhao S, Fang X, Jia C, Wang J et al. Musa balbisiana genome reveals subgenome evolution and functional divergence. NAT PLANTS. 2019.
Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, Carreel F, Hippolyte I, Horry JP, Jenny C, et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc Natl Acad Sci U S A. 2011;108(28):11311–8.
Lescot T. Genetic diversity of banana in figures. FruiTrop. 2008;155:29–33.
Paul J, Khanna H, Kleidon J, Hoang P, Geijskes J, Daniells J, Zaplin E, Rosenberg Y, James A, Mlalazi B, et al. Golden bananas in the field: elevated fruit pro-vitamin a from the expression of a single banana transgene. Plant Biotechnol J. 2017;15(4):520–32.
Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J. A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genomics. 2013;14:683.
Langhe E, Vrydaghs L, de Maret P, Perrier X, Denham T. Why bananas matter: An introduction to the history of banana domestication. Ethnobot Res Appl. 2008;7.
Israeli Y, Lahav E. Injuries to banana caused by adverse climate and weather. Diseases of Banana, Abacá and Enset. 2000:351–79.
Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007;12(10):444–51.
Yi J, Lee Y, Lee D, Cho M, Jeon J, An G. OsMPK6 plays a critical role in cell differentiation during early embryogenesis inOryza sativa. J Exp Bot. 2016;67(8):2425–37.
Lee Y, Kim YJ, Kim M, Kwak JM. MAPK cascades in guard cell signal transduction. Front Plant Sci. 2016;7.
Kim J, Woo D, Kim S, Lee S, Park H, Seok H, Chung WS, Moon Y. Arabidopsis MKKK20 is involved in osmotic stress response via regulation of MPK6 activity. Plant Cell Rep. 2012;31(1):217–24.
Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D, Li D. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ. 2011;34(8):1291–303.
Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F, et al. The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell. 2007;19(7):2213–24.
Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell. 2004;15(1):141–52.
Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol. 2018;45:1–10.
Furuya T, Matsuoka D, Nanmori T. Phosphorylation of Arabidopsis thaliana MEKK1 via Ca2+ signaling as a part of the cold stress response. J Plant Res. 2013;126(6):833–40.
Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW. A calcium/Calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem. 2010;285(10):7119–26.
Kim SH, Kim HS, Bahk S, An J, Yoo Y, Kim J, Chung WS. Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Res. 2017;45(11):6613–27.
Zhao C, Wang P, Wang L, Si T, Hsu C, Zayed O, Yu Z, Zhu J, Zhu Y, Dong J, et al. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Dev Cell. 2017;43(5):618–29.
Zhang Z, Li J, Li F, Liu H, Yang W, Chong K, Xu Y. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its Ubiquitination to activate OsTPP1 and enhances Rice chilling tolerance. Dev Cell. 2017;43(6):731–43.
Yu L, Yan J, Yang Y, Zhu W. Overexpression of tomato mitogen-activated protein kinase SlMPK3 in tobacco increases tolerance to low temperature stress. Plant Cell, Tissue and Organ Culture (PCTOC). 2015; 121(1):21–34.
Li H, Ding Y, Shi Y, Zhang X, Zhang S, Gong Z, Yang S. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Dev Cell. 2017;43(5):630–42.
Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol. 2006;141(4):1167–84.
Wang J, Hu Z, Zhao T, Yang Y, Chen T, Yang M, Yu W, Zhang B. Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). BMC Genomics. 2015;16(1):39.
Shogo I, Young Hun S, Josephson-Day AR, Miller RJ, Ghislain B, Olmstead RG, Takato I. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc Natl Acad Sci U S A. 2012;109(9):3582–7.
Tominaga-Wada R, Iwata M, Nukumizu Y, Sano R, Wada T. A full-length R-like basic-helix-loop-helix transcription factor is required for anthocyanin upregulation whereas the N-terminal region regulates epidermal hair formation. Plant Sci. 2012;183(1):115–22.
Bogumil K, Lisa A, Christopher J, Shusei S, Satoshi T, Masayoshi K, Krzysztof S. Conservation of lotus and Arabidopsis basic helix-loop-helix proteins reveals new players in root hair development. Plant Physiol. 2009;151(3):1175–85.
Ohno S, Hosokawa M, Hoshino A, Kitamura Y, Morita Y, Park KI, Nakashima A, Deguchi A, Tatsuzawa F, Doi M, et al. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). J Exp Bot. 2011;62(14):5105–16.
Kengo M, Mingzhe Z, Manli Y, Betsy R, Alan L, Rebecca L, Erich G. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol. 2007;145(3):736–46.
Leivar P, Monte E, Oka Y, Liu T, Carle C, Castillon A, Huq E, Quail PH. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling Photomorphogenesis in darkness. Curr Biol. 2008;18(23):1815–23.
Yasuyuki Y, Yasuhisa K, Kaori C, Tadashi Y, Mai O, Sayumi Y, Nobuhiko K, Tomotsugu K, Fumihiko S. Isoquinoline alkaloid biosynthesis is regulated by a unique bHLH-type transcription factor in Coptis japonica. Plant & Cell Physiology. 2011;52(7):1131–41.
Xie XB, Li S, Zhang RF, Zhao J, Chen YC, Zhao Q, Yao YX, You CX, Zhang XS, Hao YJ. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ. 2012;35(11):1884–97.
Feng HL, Ma NN, Meng X, Zhang S, Wang JR, Chai S, Meng QW. A novel tomato MYC-type ICE1-like transcription factor, SlICE1a , confers cold, osmotic and salt tolerance in transgenic tobacco. Plant Physiol Biochem. 2013;73(73C):309–20.
Viswanathan C, Masaru O, Siddhartha K, Byeong-Ha L, Xuhui H, Manu A, Jian-Kang Z. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 2003;17(8):1043–54.
Feng XM. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol. 2012;12(1):22.
Huang XS, Wang W, Zhang Q, Liu JH. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol. 2013;162(2):1178–94.
Huang XS, Zhang Q, Zhu D, Fu X, Wang M, Zhang Q, Moriguchi T, Liu JH. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. J Exp Bot. 2015;66(11):3259.
Xu W, Zhang N, Jiao Y, Li R, Xiao D, Wang Z. The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis. Mol Biol Rep. 2014;41(8):5329–42.
Gao J, Zhang S, He W, Shao X, Li C, Wei Y, Deng G, Kuang R, Hu C, Yi G et al. Comparative phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network. SCI REP-UK. 2017; 7(1):40852.
Dou TX, Hu CH, Sun XX, Shao XH, Wu JH, Ding LJ, Gao J, He WD, Biswas MK, Yang QS. MpMYBS3 as a crucial transcription factor of cold signaling confers the cold tolerance of banana. Plant Cell, Tissue and Organ Culture (PCTOC). 2016; 125(1):93–106.
Yang Q, Gao J, He W, Dou T, Ding L, Wu J, Li C, Peng X, Zhang S, Yi G. Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics. 2015;16(1):446.
Yang Q, Wu J, Li C, Wei Y, Sheng O, Hu C, Kuang R, Huang Y, Peng X, McCardle JA, et al. Quantitative proteomic analysis reveals that Antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings. Mol Cell Proteomics. 2012;11(12):1853–69.
Liu K, Hu C, Du F, Zhang YE, Wei Y, Yi G. Over-Expression of the Arabidopsis CBF1 Gene in Dongguandajiao (Musa spp. ABB group) and Detection of Its Cold Resistance. Scientia Agricultura Sinica. 2012.
Wood C. Free Radicals in Biology and Medicine. Third Edition. The International Journal of Biochemistry & Cell Biology. 1999; 31(12):1454.
Aslani Aslamarz A, Vahdati K, Hasani D, Rahemi M, Leslie CA. Cold hardiness and its relationship with Proline content in Persian walnut. European Journal of Horticultural Sciences. 2011;76(3):84–90.
Aslani Aslamarz A, Vahdati K, Hasani D, Rahemi M, Leslie CA. Supercooling and cold-hardiness of acclimated and Deacclimated buds and stems of Persian walnut cultivars and selections. HortScience horts. 2010;45(11):1662–7.
Ruelland E, Vaultier M, Zachowski A, Hurry V. Chapter 2 Cold Signalling and Cold Acclimation in Plants. In: Advances in Botanical Research., vol. Volume 49: Academic Press; 2009: 35–150.
He W, Gao J, Dou T, Shao X, Bi F, Sheng O, Deng G, Li C, Hu C, Liu J, et al. Early cold-induced peroxidases and Aquaporins are associated with high cold tolerance in Dajiao. Front Plant Sci. 2018;9:282.
Singh P, Sinha AK. A positive feedback loop governed by SUB1A1 interaction with MITOGEN-ACTIVATED PROTEIN KINASE3 imparts submergence tolerance in Rice. Plant Cell. 2016;28(5):1127–43.
Guan Y, Lu J, Xu J, McClure B, Zhang S. Two mitogen-activated protein kinases, MPK3 and MPK6, are required for funicular guidance of pollen tubes in Arabidopsis. Plant Physiol. 2014;165(2):528–33.
Zhang T, Chen S, Harmon AC. Protein–protein interactions in plant mitogen-activated protein kinase cascades. J Exp Bot. 2016;67(3):607–18.
Zhou M, Li W, Zheng Y, Lin P, Yao X, Lin J. CbRCI35, a cold responsive peroxidase from Capsella bursa-pastoris regulates reactive oxygen species homeostasis and enhances cold tolerance in tobacco. Front Plant Sci. 2016;7:1599.
Huang X, Li K, Jin C, Zhang S. ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1. SCI REP-UK. 2015;5(1):17620.
Zhao C, Lang Z, Zhu J. Cold responsive gene transcription becomes more complex. Trends Plant Sci. 2015;20(8):466–8.
Persak H, Pitzschke A. Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress. Int J Mol Sci. 2014;15(2):2517–37.
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao-Castro JR, Robertson DL. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, Rice, Moss, and algae. Plant Physiol. 2010;153(3):1398–412.
Liu JH, Peng T, Dai W. Critical cis -acting elements and interacting transcription factors: key players associated with abiotic stress responses in plants. PLANT MOL BIOL REP. 2014;32(2):303–17.
Chen H, Hsieh-Feng V, Liao P, Cheng W, Liu L, Yang Y, Lai M, Chang M. The function of OsbHLH068 is partially redundant with its homolog, AtbHLH112, in the regulation of the salt stress response but has opposite functions to control flowering in Arabidopsis. Plant Mol Biol. 2017;94(4):531–48.
Zhao ML, Wang JN, Shan W, Fan JG, Kuang JF, Wu KQ, Li XP, Chen WX, He FY, Chen JY, et al. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ. 2013;36(1):30–51.
Yao P, Sun Z, Li C, Zhao X, Li M, Deng R, Huang Y, Zhao H, Chen H, Wu Q. Overexpression of Fagopyrum tataricum FtbHLH2 enhances tolerance to cold stress in transgenic Arabidopsis. Plant Physiol Biochem. 2018;125:85–94.
Ning T, Hua Z, Xianghua L, Jinghua X, Lizhong X. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol. 2012;158(4):1755–68.
Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell. 2015;32(3):278–89.
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.
Moin M, Bakshi A, Madhav MS, Kirti PB. Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice. BRIEF FUNCT GENOMICS. 2018;17(5):339–51.
Hu C, Wei Y, Huang Y, Yi G. An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. In Vitro Cellular & Developmental Biology - Plant. 2013;49(5):584–92.
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC BIOINFORMATICS. 2011;12(1):323.
Huang C, Zhao F, Lin Y, Zheng S, Liang S, Han S. RNA-Seq analysis of global transcriptomic changes suggests a roles for the MAPK pathway and carbon metabolism in cell wall maintenance in a Saccharomyces cerevisiae FKS1 mutant. Biochemical & Biophysical Research Communications. 2018;500(3):603–8.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. METHODS. 2001;25(4):402–8.
Martin G, Baurens FC, Droc G, Rouard M, Cenci A, Kilian A, Hastie A, Doležel J, Aury JM, Alberti A. Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics. 2016;17(1):243.
Matheka J, Tripathi JN, Merga I, Gebre E, Tripathi L. A simple and rapid protocol for the genetic transformation of Ensete ventricosum. Plant Methods. 2019;15:130.
Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503 N3, 508-509, N5, 517.
Wamaitha MJ, Yamamoto R, Wong HL, Kawasaki T, Kawano Y, Shimamoto K. OsRap2.6 transcription factor contributes to rice innate immunity through its interaction with Receptor for Activated Kinase-C 1 (RACK1). RICE. 2012; 5(1):35.
Marx JL. Rice plants regenerated from protoplasts: the ability to regenerate rice protoplasts means that for the first time a major cereal will become subject to modern biotechnological methods. SCIENCE. 1987;235(4784):31–2.