MRI and CSF studies in the early diagnosis of Alzheimer's disease

Journal of Internal Medicine - Tập 256 Số 3 - Trang 205-223 - 2004
Mony J. de Leon1,2, Susan DeSanti1, Raymond Zinkowski3, P.D. Mehta4, Domenico Praticò5, S. Segal1, Christopher M. Clark5, Daniel J. Kerkman3, John F. DeBernardis3, J Li1, Lindsey Lair1, ‌Barry Reisberg1, Wai Tsui1,2, Henry Rusinek1
1From the Center for Brain Health, New York University School of Medicine, NY
2Nathan Kline Institute, Orangeburg, NY
3Molecular Geriatrics, Vernon Hills, IL
4Institute for Basic Research, Staten Island, NY
5University of Pennsylvania, PA, USA

Tóm tắt

Abstract.

The main goal of our studies has been to use MRI, FDG‐PET, and CSF biomarkers to identify in cognitively normal elderly (NL) subjects and in patients with mild cognitive impairment (MCI), the earliest clinically detectable evidence for brain changes due to Alzheimer's disease (AD). A second goal has been to describe the cross‐sectional and longitudinal interrelationships amongst anatomical, CSF and cognition measures in these patient groups. It is now well known that MRI‐determined hippocampal atrophy predicts the conversion from MCI to AD. In our summarized studies, we show that the conversion of NL subjects to MCI can also be predicted by reduced entorhinal cortex (EC) glucose metabolism, and by the rate of medial temporal lobe atrophy as determined by a semi‐automated regional boundary shift analysis (BSA‐R). However, whilst atrophy rates are predictive under research conditions, they are not specific for AD and cannot be used as primary evidence for AD. Consequently, we will also review our effort to improve the diagnostic specificity by evaluating the use of CSF biomarkers and to evaluate their performance in combination with neuroimaging. Neuropathology studies of normal ageing and MCI identify the hippocampal formation as an early locus of neuronal damage, tau protein pathology, elevated isoprostane levels, and deposition of amyloid beta 1‐42 (Aβ42). Many CSF studies of MCI and AD report elevated T‐tau levels (a marker of neuronal damage) and reduced Aβ42 levels (possibly due to increased plaque sequestration). However, CSF T‐tau and Aβ42 level elevations may not be specific to AD. Elevated isoprostane levels are also reported in AD and MCI but these too are not specific for AD. Importantly, it has been recently observed that CSF levels of P‐tau, tau hyperphosphorylated at threonine 231 (P‐tau231) are uniquely elevated in AD and elevations found in MCI are useful in predicting the conversion to AD. In our current MCI studies, we are examining the hypothesis that elevations in P‐tau231 are accurate and specific indicators of AD‐related changes in brain and cognition. In cross‐section and longitudinally, our results show that evaluations of the P‐tau231 level are highly correlated with reductions in the MRI hippocampal volume and by using CSF and MRI measures together one improves the separation of NL and MCI. The data suggests that by combining MRI and CSF measures, an early (sensitive) and more specific diagnosis of AD is at hand. Numerous studies show that neither T‐tau nor P‐tauX (X refers to all hyper‐phosphorylation site assays) levels are sensitive to the longitudinal progression of AD. The explanation for the failure to observe longitudinal changes is not known. One possibility is that brain‐derived proteins are diluted in the CSF compartment. We recently used MRI to estimate ventricular CSF volume and demonstrated that an MRI‐based adjustment for CSF volume dilution enables detection of a diagnostically useful longitudinal P‐tau231 elevation. Curiously, our most recent data show that the CSF isoprostane level does show significant longitudinal elevations in MCI in the absence of dilution correction. In summary, we conclude that the combined use of MRI and CSF incrementally contributes to the early diagnosis of AD and to monitor the course of AD. The interim results also suggest that a panel of CSF biomarkers can provide measures both sensitive to longitudinal change as well as measures that lend specificity to the AD diagnosis.

Từ khóa


Tài liệu tham khảo

10.2105/AJPH.88.9.1337

10.1016/S0197-4580(98)00022-0

10.1073/pnas.96.24.14079

10.1021/jm990103w

10.1073/pnas.97.13.7609

10.1038/78482

Agdeppa ED, 2001, Binding characteristics of radiofluorinated 6‐dialkylamino‐2‐naphthylethylidene derivatives as positron emission tomography imaging probes for beta‐amyloid plaques in Alzheimer's disease, J Neurosci, 21, 1, 10.1523/JNEUROSCI.21-24-j0004.2001

10.1016/S0960-894X(01)00734-X

10.1007/BF00690970

10.1016/S0140-6736(85)90965-1

10.1007/BF00690836

10.1007/BF00308809

10.1016/B978-0-12-547625-6.50026-X

10.2307/2529876

Lorente de No R., 1934, Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system, J Psychologie und Neurologie, 46, 113

10.1007/978-1-4615-6616-8_9

10.1093/cercor/1.1.103

10.1126/science.6474172

10.1212/WNL.40.11.1721

Langui D, 1995, Alzheimer's changes in non‐demented and demented patients: A statistical approach to their relationships, Acta Neuropathol, 89, 57, 10.1007/BF00294260

10.1111/j.1365-2990.1990.tb00940.x

10.1016/0197-4580(91)90006-6

10.1212/WNL.42.9.1681

10.1007/BF00294172

10.1002/ana.410170309

10.1016/0304-3940(92)90736-Q

10.1007/BF00294269

10.1001/archneur.60.5.729

10.1212/01.WNL.0000063311.58879.01

10.1212/WNL.41.4.469

10.1007/978-3-642-60680-9_1

Hof PR, 1996, The neuropathological changes associated with normal brain aging, Histol Histopathol, 11, 1075

10.1001/jama.283.12.1571

10.1007/BF00692056

10.1007/BF00310028

10.1016/0022-510X(85)90129-7

10.1016/S0197-4580(97)85095-6

10.1097/00005072-199704000-00010

10.1002/ana.410250506

10.1523/JNEUROSCI.16-14-04491.1996

10.1212/WNL.58.5.750

10.1016/S0306-4522(99)00476-5

10.1001/archneur.58.9.1395

10.1007/s00401-001-0477-5

10.1093/jnen/59.8.733

10.1097/00005072-199812000-00009

10.1001/archneur.55.9.1185

10.1007/s00401-001-0476-6

10.1006/exnr.1998.6860

10.1073/pnas.90.20.9649

10.1097/00002093-199803000-00005

10.1001/archneur.55.7.1001

10.1212/WNL.52.8.1555

10.1001/archneur.58.3.373

10.1016/S0304-3940(98)00904-5

10.1016/0304-3940(96)12810-X

10.1212/WNL.45.4.788

10.1002/ana.410380414

10.1212/WNL.54.7.1498

10.1006/neur.1995.0052

10.1002/ana.410380413

10.1016/S1474-4422(03)00530-1

10.1016/S0197-4580(00)00164-0

10.1016/S0304-3940(97)00228-0

10.1016/S0304-3940(99)00617-5

10.1176/appi.ajp.159.3.474

10.1006/bbrc.1997.6908

10.1016/S0304-3940(00)01697-9

10.1016/S0304-3940(99)00845-9

10.1006/exnr.2000.7501

10.1016/S0304-3940(00)01036-3

10.1016/S0002-9440(10)62554-0

10.1212/WNL.59.4.627

10.1001/archneur.59.8.1267

10.1136/jnnp.70.5.624

10.1016/S0304-3940(99)00476-0

10.1007/s100720170055

10.1002/gps.845

10.1126/science.1072994

10.1002/1531-8249(199904)45:4<504::AID-ANA12>3.0.CO;2-9

10.1007/s007020070079

10.1016/S0304-3940(00)00767-9

10.1016/S0304-3940(98)00381-4

10.1159/000008156

10.1001/archneur.57.1.100

10.1080/10611860290031831

10.1212/01.WNL.0000031794.42077.A1

10.1073/pnas.151261398

10.1046/j.1471-4159.2002.00889.x

10.1016/S0197-4580(00)00229-3

10.1002/ana.410440108

10.1016/S0304-3940(99)00323-7

10.1212/WNL.38.6.909

10.1016/0304-3940(96)12905-0

10.1111/j.1532-5415.1997.tb03775.x

10.1016/S0006-3223(99)00143-2

Nishimura T, 1998, Basic and clinical studies on the measurement of tau protein in cerebrospinal fluid as a biological marker for Alzheimer's disease and related disorders: multicenter study in Japan, Methods Find Exp Clin Pharmacol, 20, 227, 10.1358/mf.1998.20.3.485673

10.1212/WNL.53.7.1488

10.1016/S0304-3940(02)01038-8

10.1016/S0009-8981(01)00573-3

10.1016/S0002-9440(10)64947-4

10.1212/WNL.57.10.1763

10.1046/j.1365-2990.2003.00424.x

10.1111/j.1750-3639.1999.tb00215.x

10.1096/fasebj.12.15.1777

10.1212/WNL.52.3.562

10.1002/1531-8249(200011)48:5<809::AID-ANA19>3.0.CO;2-9

10.1001/archneur.59.6.972

10.1016/S0304-3940(02)01483-0

10.1016/S0140-6736(89)90911-2

Leon MJ, 1993, The radiologic prediction of Alzheimer's disease: the atrophic hippocampal formation, Am J Neuroradiol, 14, 897

10.1007/s004150050387

10.1212/WNL.52.7.1397

10.1034/j.1600-0404.107.s179.10.x

10.1212/WNL.50.6.1563

10.1016/S0197-4580(96)00213-8

10.1136/jnnp.71.4.441

10.1016/S0197-4580(01)00271-8

10.1212/WNL.54.9.1760

10.1016/S0197-4580(98)00007-4

10.1016/S0140-6736(05)74869-8

10.1111/j.1749-6632.2000.tb06730.x

10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I

10.1073/pnas.191044198

10.1016/S0197-4580(99)00107-4

10.1159/000107349

10.1016/S0022-3956(98)90048-6

10.1097/00001756-200103260-00045

10.1212/WNL.52.1.91

10.1212/WNL.56.10.1386

10.1212/WNL.57.10.1756

10.1148/radiol.2293021299

10.1212/WNL.55.4.484

10.1007/978-3-642-54195-7

10.1148/radiology.176.1.2353093

10.1117/12.185228

10.1016/S0925-4927(99)00007-4

10.1016/S0925-4927(01)00097-X

10.2466/pms.1968.27.1.277

Wechsler D., 1987, Wechsler Memory Scale–Revised

10.1177/089198879300600205

10.1016/S0304-3940(01)01754-2

10.3109/13506129908993283

Narkiewicz O, 1993, Dilatation of the lateral part of the transverse fissure of the brain in Alzheimer's disease, Acta Neurobiol Exp (Warsz), 53, 457

10.1007/BF01064929

10.1097/00005072-199305000-00013

George AE, 1990, CT diagnostic features of Alzheimer disease: importance of the choroidal/hippocampal fissure complex, Am J Neuroradiol, 11, 101

10.1001/archneur.1993.00540090066012

Holodny AI, 1998, MRI differential diagnosis of normal pressure hydrocephalus and Alzheimer disease: significance of the parahippocampal fissures, Am J Neuroradiol, 19, 813

10.1016/S0197-4580(97)00001-8

10.1016/S0197-4580(01)00230-5

Golomb J, 1994, Hippocampal formation size in normal human aging: a correlate of delayed secondary memory performance, Learn Mem, 1, 45, 10.1101/lm.1.1.45

10.1212/WNL.47.3.810

10.1097/00004728-199611000-00030

10.1002/jmri.1880070620

10.1097/00004424-199310000-00004