MEttLE: a modelling-based learning environment for undergraduate engineering estimation problem solving
Tóm tắt
Estimation is an important class of problems that engineering undergraduates must be able to solve. However teaching-learning of estimation is under emphasized in the current engineering curriculum. In this paper, we report on the first cycle of a design-based research project to design a technology-enhanced learning environment (TELE) to help students learn estimation. The TELE includes features such as a progressive higher-order modelling-based structuring of the estimation process, a problem system simulator and metacognitive scaffolds. We performed a lab study and found that learners were able to use the features in the TELE to solve the estimation problem and obtain an order-of-magnitude estimate. Further, learners learned some of the reasoning processes involved in performing estimation and recognized the role of evaluation and the need for practical considerations in estimation. We identified the roles of various features in the TELE for learning these estimation reasoning processes. These results have implications for the redesign of our TELE to improve student learning of estimation.
Tài liệu tham khảo
Adams, J.P., & Turner, S.J. (2008). Problem solving and creativity for undergraduate engineers: process or product? In EE2008 - The International conference on innovation, good practice and research in engineering education conference proceedings. Higher Education Academy, Loughborough.
Adolphy, S., Gericke, K., Blessing, L. (2009). Estimation and its role in Engineering Design - An introduction. In Ds 58-9: Proceedings of ICED 09, the 17th International conference on engineering design, vol. 9, Human behavior in design. Design Society, Palo Alto, (pp. 255–266).
Avouris, N., Margaritis, M., Komis, V., Saez, A., Meléndez, R. (2003). Modellingspace: interaction design and architecture of a collaborative modelling environment. In Cblis conference proceedings 2003 volume i: New technologies and their applications in education. Department of Educational Sciences, University of Cyprus.
Barab, S., & Squire, K. (2004). Design-based research: putting a stake in the ground. Journal of the Learning Sciences, 13(1), 1–14.
Basu, S., Dickes, A., Kinnebrew, J.S., Sengupta, P., Biswas, G. (2013). CTSiM: A Computational Thinking Environment for Learning Science through Simulation and Modeling. In Proceedings of the 5th International conference on computer supported education. SciTePress, Aachen, (pp. 369–378).
Basu, S., Kinnebrew, J.S., Shekhar, S., Caglar, F., Rafi, T.H., Biswas, G., Gohkale, A. (2015). Collaborative Problem Solving using a Cloud-based Infrastructure to Support High School STEM Education. In Proceedings of the 122nd ASEE annual conference & exposition. American Society for Engineering Education, Seattle.
Blikstein, P. (2012). Re-presenting complex scientific phenomena using agent-based modeling in engineering education. In The future of learning: Proceedings of the 10th international conference of the learning sciences (ICLS 2012) - volume 1, full papers. International Society of the Learning Sciences, Sydney, (pp. 387–394).
Blowers, P. (2009). Application of multimodal software tools to teach problem solving skills. In Proceedings of the 116th ASEE annual conference and exposition. American Society for Engineering Education, Austin.
Bozic, M., Pavloviü, D.S., Yizmiü, S., Tramullas, M.T.E. (2014). Engineering practice: teaching ill-structured problem solving in an internship-like course. In 2014 IEEE Global Engineering Education Conference (EDUCON). IEEE, Istanbul, (pp. 721–726).
Braun, V., & Clarke, V. (1996). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.
Cobb, P., Confrey, J., Lehrer, R., Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.
Collins, A., Joseph, D., Bielaczyc, K. (2004). Design research : theoretical and methodological issues. Journal of the Learning Sciences, 13(1), 15–42.
De Jong, T., & van Joolingen, W.R. (2008). Model-facilitated learning. In Handbook of research on educational communications and technology. Lawrence Erlbaum, New York, (pp. 457–468).
Dunn-rankin, D. (2001). Evaluating design alternatives – the role of simple engineering analysis and estimation. In Proceedings of the 2001 ASEE annual conference and exposition. American Society for Engineering Education, Albuquerque.
Dym, C.L., Agogino, A.M., Eris, O., Frey, D.D., Leifer, L.J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103–120.
Elger, D., Beller, J., Beyerlein, S., Williams, B. (2003). Performance criteria for quality in problem solving. In Proceedings of the 2003 ASEE annual conference and exposition. American Society for Engineering Education, Nashville.
Ferguson, E.S. (1977). The mind’s eye: nonverbal thought in technology. Science (New York, N.Y.), 197(4306), 827–836.
Fretz, E.B., Wu, H.-K., Zhang, B., Davis, E.A., Krajcik, J.S., Soloway, E. (2002). An investigation of software scaffolds supporting modeling practices. Research in Science Education, 32(4), 567–589.
Ge, X., & Land, S.M. (2004). A conceptual framework for scaffolding ill-structured problem-solving processes using question prompts and peer interactions. Educational Technology Research and Development, 52(2), 5–22.
Govaerts, S., Cao, Y., Vozniuk, A., Holzer, A., Zutin, D.G., Ruiz, E.S.C., Bollen, L., Manske, S., Faltin, N., Salzmann, C., Tsourlidaki, E. (2013). Towards an online lab portal for inquiry-based stem learning at school. In International Conference on Web-Based Learning. Springer, Berlin, (pp. 244–253).
Hamilton, E., Lesh, R.A., Lester, F., Brilleslyper, M. (2008). Model-Eliciting Activities (MEAs) as a Bridge Between Engineering Education Research and Mathematics Department of Mathematical Sciences. Advances in Engineering Education, 1(2), 1–25.
Hegarty, M., Kriz, S., Cate, C. (2003). The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction, 21(4), 209–249.
Heidweiller, A.J., van der Voort, E., Wisse, G. (2011). Development of an educational software tool to support mechanics modeling during the design process. In DS 69: Proceedings of E&PDE 2011, the 13th International conference on engineering and product design education. Design Society, London.
Hutchins, E., & Nomura, S. (2011). Collaborative construction of multimodal utterances. In Embodied interaction: Language and body in the material world. Cambridge University Press, New York, (pp. 29–43).
Hwang, G.-J., Kuo, F.-R., Chen, N.-S., Ho, H.-J. (2014). Effects of an integrated concept mapping and web-based problem- solving approach on students’ learning achievements, perceptions and cognitive loads. Computers & Education, 71, 77–86.
Jonassen, D.H. (1997). Instructional design models for well-structured and ill-structured problem-solving learning outcomes Educational. Technology Research and Development, 45(1), 65–94.
Jonassen, D.H. (2011). Learning to Solve Problems. New York: Routledge.
Jonassen, D.H., Strobel, J., Gottdenker, J. (2005). Model building for conceptual change. Interactive Learning Environments, 13(1/2), 15–37.
Jonassen, D.H., Strobel, J., Lee, C.B. (2006). Everyday problem solving in engineering: lessons for engineering educators. Journal of Engineering Education, 95(2), 139–151.
Jordan, B., & Henderson, A. (1995). Interaction analysis: foundations and practice. The journal of the learning sciences, 4(1), 39–103.
Kalnins, S.N., Valtere, S., Gusca, J., Valters, K., Kass, K., Blumberga, D. (2014). Cooperative problem-based learning approach in environmental engineering studies. Agronomy Research, 12(2), 663–672.
Kim, M.C., & Hanna, M.J. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs): bridging research and theory with practice. Computers & Education, 56, 403–417.
Kothiyal, A., & Murthy, S. (2015). Exploring student difficulties in divide and conquer skill with a mapping tool. In 23rd International conference on computers in education, (ICCE 2015). Asia Pacific Society for Computers in Education, China.
Kothiyal, A., Murthy, S., Chandrasekharan, S. (2016). “Hearts pump and hearts beat”: Engineering estimation as a form of model-based reasoning. In In 12th International Conference of the Learning Sciences (ICLS 2016). International Society of the Learning Sciences, Singapore.
Lee, Y., Baylor, A.L., Nelson, D.W. (2005). Supporting problem-solving performance through the construction of knowledge maps. Journal of Interactive Learning Research, 16(2), 117–131.
Lehrer, R., & Schauble, L. (2000). Developing model-based reasoning in mathematics and science. Journal of Applied Developmental Psychology, 21(1), 39–48.
Lesh, R.A., & Lehrer, R. (2003). Models and modeling perspectives on the development of students and teachers. Mathematical Thinking and Learning, 5(2), 109–129.
Linder, B.M. (1999). Understanding estimation and its relation to engineering education. PhD thesis, Massachusetts Institute of Technology.
Linder, B.M., & Flowers, W.C. (2001). Integrating engineering science and design : a definition and discussion *. International Journal of Engineering Education, 17(4 and 5), 436–439.
Lindgren, R., & Schwartz, D.L. (2009). Spatial learning and computer simulations in science, (Vol. 31.
Mahajan, S. (2014). The art of insight in science and engineering: mastering complexity. Cambridge: MIT Press.
Mahajan, S. (2017). Welcome to the back of the envelope. American Journal of Physics, 85(12), 959–961.
Malcolm, P.T. (2013). The 3D Estimator: Introducing Middle-School Students to Back of the Envelope Estimation Interactively The 3D Estimator: Introducing Middle-School Students to Back of the Envelope Estimation Interactively. In Proceedings of the 120th ASEE annual conference & exposition. American Society for Engineering Education, Atlanta.
McKenney, S., & Reeves, T.C. (2014). Educational design research. In Handbook of research on educational communications and technology. Springer, New York, (pp. 131–140).
Mulder, Y.G., Lazonder, A.W., Jong, T.D. (2011). Comparing two types of model progression in an inquiry learning environment with modelling facilities. Learning and Instruction, 21, 614–624.
Nachtmann, H., Chimka, J.R., Youngblood, A.D. (2003). Investigating Engineering Student Estimation Processes. In Proceedings of the 2003 ASEE annual conference and exposition. American Society for Engineering Education, Nashville.
Paritosh, P.K., & Forbus, K.D. (2003). Qualitative modeling and similarity in back of the envelope reasoning. In Proceedings of the 26th Annual Conference of Cognitive Science Society. Cognitive Science Society, Austin.
Quintana, C., Reiser, B.J., Davis, E.A. (2004). A scaffolding design framework for software to support science inquiry. The Journal of Learning Sciences, 13(3), 337–386.
Raviv, D., Harris, A., Dezotti, T. (2016). Estimation as an essential skill in entrepreneurial thinking. In Proceedings of the 123rd ASEE annual conference and exposition. American Society for Engineering Education, New Orleans.
Reiser, B.J. (2004). Scaffolding complex learning : the mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273–304.
Sandoval, W.A., & Reiser, B.J. (2004). Explanation-driven inquiry: integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88, 345–372.
Shakerin, S. (2006). The art of estimation. International Journal of Engineering Education, 22(2), 273–278.
Shekar, A. (2014). Project-based learning in engineering design education: sharing best practices. In Proceedings of the 121st ASEE annual conference and exposition, conference proceedings. American Society for Engineering Education, Indianapolis.
Shekoyan, V. (2009). Using multiple-possibility physics problems in introductory physics courses. Rutgers The State University of New Jersey-New Brunswick.
Shin, N., Jonassen, D.H., Mcgee, S. (2003). Predictors of well-structured and ill-structured problem solving in an astronomy simulation, 40(1), 6–33.
Slotta, J.D., & Linn, M.C. (2009). WISE science: web-based inquiry in the classroom. New York: Teachers College Press.
Stoyanov, S., & Kommers, P. (2006). WWW-intensive concept mapping for metacognition in solving ill-structured problems. International Journal of Continuing Engineering Education and Life Long Learning, 16(3-4), 297–316.
Sun, D., & Looi, C.K. (2012). Designing for model progression to facilitate students’ science learning. In Proceedings of the 20th international conference on computers in education, ICCE 2012. Asia-Pacific Society for Computers in Education, Singapore, (pp. 674–681).
Sun, D., & Looi, C.K. (2013). Designing a web-based science learning environment for model-based collaborative inquiry. Journal of Science Education and Technology, 22(1), 73–89.
Swaak, J., & De Jong, T. (2001). Discovery simulations and the assessment of intuitive knowledge. Journal of Computer Assisted Learning, 17(3), 284–294.
Swaak, J., van Joolingen, W.R., de Jong, T. (1998). Supporting simulation-based learning; the effects of model progression and assignments on definitional and intuitive knowledge. Learning and Instruction, 8(3), 235–252.
Varma, V. (2009). ePlan room for estimating and bidding construction projects: a new tool in construction engineering education delivery. In Proceedings of the 116th ASEE annual conference and exposition. American Society for Engineering Education, Austin.
Wankat, P.C., & Oreovicz, F.S. (2015). Teaching engineering. West Lafayette: Purdue University Press.
White, B., Frederiksen, J., Frederiksen, T., Eslinger, E., Loper, S., Collins, A. (2002). Inquiry island: Affordances of a multi-agent environment for scientific inquiry and reflective learning. In Proceedings of the 5th International conference of the learning sciences. International Society of the Learning Sciences, Seattle.
White, B.Y., & Frederiksen, J.R. (1998). Inquiry, modeling, and metacognition: making science accessible to all students. Cognition and Instruction, 16(1), 3–118.
Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: learning biology through constructing and testing computational theories -an embodied modeling approach. Cognition and Instruction, 24(2), 171–209.
Williams, M., & Ringbauer, E. (2014). PBL field deployment: Lessons learned adding a problem-based learning unit to a traditional engineering lecture and lab course. In Proceedings of the 121st ASEE annual conference and exposition. American Society for Engineering Education, Indianapolis.
Williams, R.F. (2006). Using cognitive ethnography to study instruction. In Proceedings of the 7th International conference of the learning sciences. International Society of the Learning Sciences, Bloomington, (pp. 838–844).
Woods, D.R., Hrymak, A.N., Marshall, R.R., Wood, P.E., Crowe, C.M., Hoffman, T.W., Wright, J.D., Taylor, P.A., Woodhouse, K.A., Bouchard, C.K. (1997). Developing problem solving skills: the McMaster problem solving program. Journal of Engineering Education, 86(April), 75–91.
Wu, B., & Wang, M. (2012). Integrating problem solving and knowledge construction through dual mapping Minhong Wang. Knowledge Management & E-Learning, 4(3), 248–257.
Zheng, W., Wang, M.L., Yin, J. (2013). Correlation analysis of scaffolding creative problem solving through question prompts with process and outcomes of project-based service learning. In Proceedings of the 120th ASEE annual conference and exposition. American Society for Engineering Education, Atlanta.