MATH5 controls the acquisition of multiple retinal cell fates
Molecular Brain - 2010
Tóm tắt
Math5-null mutation results in the loss of retinal ganglion cells (RGCs) and in a concurrent increase of amacrine and cone cells. However, it remains unclear whether there is a cell fate switch of Math5-lineage cells in the absence of Math5 and whether MATH5 cell-autonomously regulates the differentiation of the above retinal neurons. Here, we performed a lineage analysis of Math5-expressing cells in developing mouse retinas using a conditional GFP reporter (Z/EG) activated by a Math5-Cre knock-in allele. We show that during normal retinogenesis, Math5-lineage cells mostly develop into RGCs, horizontal cells, cone photoreceptors, rod photoreceptors, and amacrine cells. Interestingly, amacrine cells of Math5-lineage cells are predominately of GABAergic, cholinergic, and A2 subtypes, indicating that Math5 plays a role in amacrine subtype specification. In the absence of Math5, more Math5-lineage cells undergo cell fate conversion from RGCs to the above retinal cell subtypes, and occasionally to cone-bipolar cells and Müller cells. This change in cell fate choices is accompanied by an up-regulation of NEUROD1, RXRγ and BHLHB5, the transcription factors essential for the differentiation of retinal cells other than RGCs. Additionally, loss of Math5 causes the failure of early progenitors to exit cell cycle and leads to a significant increase of Math5-lineage cells remaining in cell cycle. Collectively, these data suggest that Math5 regulates the generation of multiple retinal cell types via different mechanisms during retinogenesis.
Từ khóa
Tài liệu tham khảo
Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D: Cell fate determination in the vertebrate retina. PNAS. 1996, 93: 589-595. 10.1073/pnas.93.2.589.
Livesey FJ, Cepko CL: VERTEBRATE NEURAL CELL-FATE DETERMINATION: LESSONS FROM THE RETINA. Nat Rev Neurosci. 2001, 2: 109-118. 10.1038/35053522.
Young RW: Cell differentiation in the retina of the mouse. The Anatomical Record. 1985, 212: 199-205. 10.1002/ar.1092120215.
Hatakeyama J, Tomita K, Inoue T, Kageyama R: Roles of homeobox and bHLH genes in specification of a retinal cell type. Development. 2001, 128: 1313-1322.
Inoue T, Hojo M, Bessho Y, Tano Y, Lee JE, Kageyama R: Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development (Cambridge, England). 2002, 129: 831-842.
Hatakeyama J, Kageyama R: Retinal cell fate determination and bHLH factors. Seminars in Cell & Developmental Biology Protein Misfolding and Human Disease and Developmental Biology of the Retina. 2004, 15: 83-89.
Wang JC-C, Harris WA: The role of combinational coding by homeodomain and bHLH transcription factors in retinal cell fate specification. Developmental Biology. 2005, 285: 101-115. 10.1016/j.ydbio.2005.05.041.
Hatakeyama J, Tomita K, Inoue T, Kageyama R: Roles of homeobox and bHLH genes in specification of a retinal cell type. Development. 2001, 128: 1313-1322.
Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L: Requirement for math5 in the development of retinal ganglion cells. Genes & Development. 2001, 15: 24-29.
Brown NL, Patel S, Brzezinski J, Glaser T: Math5 is required for retinal ganglion cell and optic nerve formation. Development. 2001, 128: 2497-2508.
Kay JN, Finger-Baier KC, Roeser T, Staub W, Baier H: Retinal Ganglion Cell Genesis Requires lakritz, a Zebrafish atonal Homolog. Neuron. 2001, 30: 725-736. 10.1016/S0896-6273(01)00312-9.
Yang Z, Ding K, Pan L, Deng M, Gan L: Math5 determines the competence state of retinal ganglion cell progenitors. Dev Biol. 2003, 264: 240-254. 10.1016/j.ydbio.2003.08.005.
Kanadia RN, Cepko CL: Alternative splicing produces high levels of noncoding isoforms of bHLH transcription factors during development. Genes Dev. 2010, 24: 229-234. 10.1101/gad.1847110.
Morrow EM, Furukawa T, Lee JE, Cepko CL: NeuroD regulates multiple functions in the developing neural retina in rodent. Development. 1999, 126: 23-36.
Pennesi ME, Cho J-H, Yang Z, Wu SH, Zhang J, Wu SM, Tsai M-J: BETA2/NeuroD1 Null Mice: A New Model for Transcription Factor-Dependent Photoreceptor Degeneration. J Neurosci. 2003, 23: 453-461.
Feng L, Xie X, Joshi PS, Yang Z, Shibasaki K, Chow RL, Gan L: Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina. Development. 2006, 133: 4815-4825. 10.1242/dev.02664.
Turner DL, Cepko CL: A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987, 328: 131-136. 10.1038/328131a0.
Holt CE, Bertsch TW, Ellis HM, Harris WA: Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron. 1988, 1: 15-26. 10.1016/0896-6273(88)90205-X.
Wetts R, Fraser SE: Multipotent precursors can give rise to all major cell types of the frog retina. Science. 1988, 239: 1142-1145. 10.1126/science.2449732.
Turner DL, Snyder EY, Cepko CL: Lineage-independent determination of cell type in the embryonic mouse retina. Neuron. 1990, 4: 833-845. 10.1016/0896-6273(90)90136-4.
Vetter ML, Brown NL: The role of basic helix-loop-helix genes in vertebrate retinogenesis. Semin Cell Dev Biol. 2001, 12: 491-498. 10.1006/scdb.2001.0273.
Furukawa T, Morrow EM, Cepko CL: Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell. 1997, 91: 531-541. 10.1016/S0092-8674(00)80439-0.
Ohsawa R, Kageyama R: Regulation of retinal cell fate specification by multiple transcription factors. Brain Res. 2008, 1192: 90-98. 10.1016/j.brainres.2007.04.014.
Le TT, Wroblewski E, Patel S, Riesenberg AN, Brown NL: Math5 is required for both early retinal neuron differentiation and cell cycle progression. Dev Biol. 2006, 295: 764-778. 10.1016/j.ydbio.2006.03.055.
Mu X, Fu X, Sun H, Liang S, Maeda H, Frishman LJ, Klein WH: Ganglion Cells Are Required for Normal Progenitor-Cell Proliferation but Not Cell-Fate Determination or Patterning in the Developing Mouse Retina. Current Biology. 2005, 15: 525-530. 10.1016/j.cub.2005.01.043.
Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T: Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development. 1998, 125: 4821-4833.
Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L: Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 2001, 15: 24-29. 10.1101/gad.855301.
Schwenk FB, Udo , Rajewsky , Klaus : A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Research. 1995, 23: 5080-5081. 10.1093/nar/23.24.5080.
Soriano P: Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999, 21: 70-71. 10.1038/5007.
Zinyk DL, Mercer EH, Harris E, Anderson DJ, Joyner AL: Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Current Biology. 1998, 8: 665-672. 10.1016/S0960-9822(98)70255-6.
Novak A, Guo C, Yang W, Nagy A, Lobe CG: Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. genesis. 2000, 28: 147-155. 10.1002/1526-968X(200011/12)28:3/4<147::AID-GENE90>3.0.CO;2-G.
Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, Shows TB, Nathans J: The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci. 1995, 15: 4762-4785.
Haverkamp S, Wässle H: Immunocytochemical analysis of the mouse retina. The Journal of Comparative Neurology. 2000, 424: 1-23. 10.1002/1096-9861(20000814)424:1<1::AID-CNE1>3.0.CO;2-V.
Gabriel R, Witkovsky P: Cholinergic, but not the rod pathway-related glycinergic (AII), amacrine cells contain calretinin in the rat retina. Neuroscience Letters. 1998, 247: 179-182. 10.1016/S0304-3940(98)00323-1.
Araki CM, Hamassaki-Britto DE: Calretinin co-localizes with the NMDA receptor subunit NR1 in cholinergic amacrine cells of the rat retina. Brain Research. 2000, 869: 220-224. 10.1016/S0006-8993(00)02364-7.
Ding Q, Chen H, Xie X, Libby RT, Tian N, Gan L: BARHL2 differentially regulates the development of retinal amacrine and ganglion neurons. J Neurosci. 2009, 29: 3992-4003. 10.1523/JNEUROSCI.5237-08.2009.
Liu ISC, Chen J-d, Ploder L, Vidgen D, van der Kooy D, Kalnins VI, Mclnnes RR: Developmental expression of a novel murine homeobox gene (Chx10): Evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron. 1994, 13: 377-393. 10.1016/0896-6273(94)90354-9.
Dkhissi O, Julien J-F, Wasowicz M, Jeanine Nguyen-Legros ND-T, Versaux-Botteri C: Differential expression of GAD65 and GAD67 during the development of the rat retina. Brain Research. 2001, 919: 242-249. 10.1016/S0006-8993(01)03022-0.
Galli-Resta L, Resta G, Tan S-S, Reese BE: Mosaics of Islet-1-Expressing Amacrine Cells Assembled by Short-Range Cellular Interactions. J Neurosci. 1997, 17: 7831-7838.
Haverkamp S, Haeseleer F, Hendrickson A: A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina. Visual Neuroscience. 2003, 20: 589-600. 10.1017/S0952523803206015.
Elshatory Y, Deng M, Xie X, Gan L: Expression of the LIM-homeodomain protein Isl1 in the developing and mature mouse retina. J Comp Neurol. 2007, 503: 182-197. 10.1002/cne.21390.
Kubbutat MH, Key G, Duchrow M, Schluter C, Flad HD, Gerdes J: Epitope analysis of antibodies recognising the cell proliferation associated nuclear antigen previously defined by the antibody Ki-67 (Ki-67 protein). J Clin Pathol. 1994, 47: 524-528. 10.1136/jcp.47.6.524.
Swain PK, Hicks D, Mears AJ, Apel IJ, Smith JE, John SK, Hendrickson A, Milam AH, Swaroop A: Multiple Phosphorylated Isoforms of NRL Are Expressed in Rod Photoreceptors. J Biol Chem. 2001, 276: 36824-36830. 10.1074/jbc.M105855200.
Dyer MA, Cepko CL: Control of Müller glial cell proliferation and activation following retinal injury. 2000, 3: 873-880.
Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P: Pax6 Is Required for the Multipotent State of Retinal Progenitor Cells. Cell. 2001, 105: 43-55. 10.1016/S0092-8674(01)00295-1.
de Melo J, Qiu X, Du G, Cristante L, Eisenstat DD: Dlx1, Dlx2, Pax6, Brn3b, and Chx10 homeobox gene expression defines the retinal ganglion and inner nuclear layers of the developing and adult mouse retina. The Journal of Comparative Neurology. 2003, 461: 187-204. 10.1002/cne.10674.
Elshatory Y, Everhart D, Deng M, Xie X, Barlow RB, Gan L: Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J Neurosci. 2007, 27: 12707-12720. 10.1523/JNEUROSCI.3951-07.2007.
Dyer MA, Livesey FJ, Cepko CL, Oliver G: Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. 2003, 34: 53-58.
Haverkamp S, Ghosh KK, Hirano AA, Wässle H: Immunocytochemical description of five bipolar cell types of the mouse retina. The Journal of Comparative Neurology. 2003, 455: 463-476. 10.1002/cne.10491.
Zhao X, Huang J, Khani SC, Palczewski K: Molecular Forms of Human Rhodopsin Kinase (GRK1). J Biol Chem. 1998, 273: 5124-5131. 10.1074/jbc.273.9.5124.
Roberts MR, Hendrickson A, McGuire CR, Reh TA: Retinoid X receptor (gamma) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina. Investigative Ophthalmology & Visual Science. 2005, 46: 2897-2904.
Chow RL, Snow B, Novak J, Looser J, Freund C, Vidgen D, Ploder L, McInnes RR: Vsx1, a rapidly evolving paired-like homeobox gene expressed in cone bipolar cells. Mechanisms of Development. 2001, 109: 315-322. 10.1016/S0925-4773(01)00585-8.
Chow RL, Volgyi B, Szilard RK, Ng D, McKerlie C, Bloomfield SA, Birch DG, McInnes RR: Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1. PNAS. 2004, 101: 1754-1759. 10.1073/pnas.0306520101.