MigClim: Predicting plant distribution and dispersal in a changing climate

Diversity and Distributions - Tập 15 Số 4 - Trang 590-601 - 2009
Robin Engler1, Antoine Guisan2
1Department of Ecology and Evolution; University of Lausanne; CH - 1015 Lausanne Switzerland
2University of Lausanne

Tóm tắt

AbstractAim  Many studies have forecasted the possible impact of climate change on plant distributions using models based on ecological niche theory, but most of them have ignored dispersal‐limitations, assuming dispersal to be either unlimited or null. Depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under‐ or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of ‘potentially suitable’ and ‘potentially colonizable’ habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed MigClim, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. MigClim implements various parameters, such as dispersal distance, increase in reproductive potential over time, landscape fragmentation or long‐distance dispersal.Location  Western Swiss Alps.Methods  Using our MigClim model, several simulations were run for two virtual species by varying dispersal distance and other parameters. Each simulation covered the 100‐year period 2001–2100 and three different IPCC‐based temperature warming scenarios were considered. Results of dispersal‐limited projections were compared with unlimited and no‐dispersal projections.Results  Our simulations indicate that: (1) using realistic parameter values, the future potential distributions generated using MigClim can differ significantly (up to more than 95% difference in colonized surface) from those that ignore dispersal; (2) this divergence increases under more extreme climate warming scenarios and over longer time periods; and (3) the uncertainty associated with the warming scenario can be as large as the one related to dispersal parameters.Main conclusions  Accounting for dispersal, even roughly, can importantly reduce uncertainty in projections of species distribution under climate change scenarios.

Từ khóa


Tài liệu tham khảo

10.1111/j.1365-2699.2006.01584.x

10.1046/j.1354-1013.2001.00467.x

10.1016/j.agee.2004.09.006

10.1078/1439-1791-00088

10.1007/PL00008876

10.1890/0012-9615(1998)068[0325:SDATHM]2.0.CO;2

10.2307/2656714

10.2307/2997790

10.1890/0012-9658(1999)080[1475:SDNAFP]2.0.CO;2

10.1890/01-0618

10.1890/04-1325

10.2307/3236461

10.1126/science.292.5517.673

10.1038/35842

10.1046/j.1365-2699.2003.00839.x

10.1111/j.0022-0477.2004.00872.x

10.1111/j.0021-8901.2004.00881.x

10.1111/j.1461-0248.2006.00928.x

10.1046/j.1472-4642.1999.00058.x

10.1111/j.0022-0477.2004.00921.x

10.1111/j.1461-0248.2005.00792.x

10.1890/06-0539

10.1890/1051-0761(2000)010[1833:UADLMF]2.0.CO;2

10.1046/j.1365-2745.2003.00781.x

Houghton J.T., 2001, Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change

Howard C.L., 1991, The dispersal of weeds: seed movement in arable agriculture, Proceedings of the Brighton Crop Protection Conference, Weeds, 2, 821

IPCC, 2007, Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change

10.1016/S0304-3800(98)00200-2

10.1111/j.1466-822X.2004.00093.x

10.1016/j.ecolmodel.2005.11.046

10.1046/j.1365-2699.2002.00702.x

10.1007/978-1-4899-3242-6

10.1016/S0006-3207(02)00414-7

Midgley G.F., 2006, Migration rate limitations on climate change induced range shifts in Cape Proteaceae, Diversity and Distributions, 12, 555, 10.1111/j.1366-9516.2006.00273.x

10.1007/978-3-540-32730-1_11

Müller‐Schneider P., 1986, Verbreitungsbiologie der Blütenpflanzen Graubündens, Veröffentlichtes Geobotanisches Institut ETH Stiftung Rübel Zürich, 85, 1

10.1111/j.1366-9516.2005.00159.x

10.1126/science.1124975

10.1111/j.1095-8649.1994.tb01070.x

10.1034/j.1600-0706.2003.12146.x

10.1111/j.1366-9516.2005.00146.x

10.1016/j.tree.2008.08.003

10.1016/S0304-3800(01)00392-1

10.1016/j.biocon.2004.12.006

Pitelka L.F., 1997, Plant migration and climate change, American Scientist, 85, 464

10.1111/j.1365-2699.2006.01466.x

10.1016/S0169-5347(01)02348-5

10.1145/349194.349202

10.1016/j.ecolmodel.2006.10.009

10.2307/2260696

10.1890/03-0522

10.1111/j.0022-0477.2004.00927.x

10.1890/0012-9615(2003)073[0173:MLDOPD]2.0.CO;2

10.1038/nature02121

10.1111/j.1365-2486.2004.00859.x

10.1073/pnas.0409902102

10.1016/j.ppees.2007.09.004

10.1007/s00035-007-0797-8

Ward B.C., 2004, Technical Report: LANDIS‐II double exponential seed dispersal algorithm

Willson M.F., 1993, Dispersal mode, seed shadows, and colonization patterns, Vegetatio, 107, 261, 10.1007/BF00052229

10.2307/2997350

10.1016/S0304-3800(01)00480-X