Lysozyme điều chỉnh polymer ngoại bào trong bùn hoạt tính và thúc đẩy sự hình thành biofilm điện hoạt

Bioprocess and Biosystems Engineering - Tập 45 - Trang 1065-1074 - 2022
Xindi Jia1,2, Xiaoliang Liu2, Kaili Zhu2, Xinxin Zheng2, Zhiyuan Yang2, Xue Yang2, Yunhua Hou2, Qinzheng Yang1,2
1State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
2Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People’s Republic of China

Tóm tắt

Sự hình thành biofilm điện hoạt từ bùn hoạt tính trên bề mặt điện cực là một bước then chốt để xây dựng hệ thống sinh điện hóa, nhưng điều này thường bị giới hạn bởi sự tương tác kém giữa vi khuẩn và giao diện điện cực. Trong nghiên cứu này, chúng tôi báo cáo một phương pháp mới để thúc đẩy sự hình thành biofilm điện hoạt bằng cách điều chỉnh nội dung chất polymer ngoại bào (EPS) trong bùn hoạt tính thông qua lysozyme. Nghiên cứu về tác động của việc điều trị bằng lysozyme đối với nội dung polymer ngoại bào và sự hình thành biofilm của vi khuẩn điện hoạt cho thấy lysozyme có thể cải thiện tính thấm của màng tế bào vi khuẩn dương và do đó tăng cường nội dung EPS trong bùn hoạt tính. Các đặc trưng về hoạt động điện hoá, hình thái bề mặt và cấu trúc cộng đồng của biofilm anode cho thấy việc tăng cường nội dung EPS thúc đẩy sự bám dính của các vi khuẩn hỗn hợp trong bùn hoạt tính trên điện cực, dẫn đến các biofilm dày đặc hơn với độ dẫn điện tốt hơn. Pin nhiên liệu vi sinh (MFC) được ủ bằng bùn có nội dung EPS cao thể hiện mật độ công suất lên tới 2.195 W/m2, cao hơn nhiều so với bùn không được xử lý (1.545 W/m2). Chiến lược điều chỉnh nội dung EPS trong bùn hoạt tính bằng một enzyme sinh học có thể tăng cường hiệu quả khả năng hình thành biofilm của cộng đồng vi khuẩn và thể hiện tiềm năng ứng dụng lớn trong việc xây dựng các hệ thống sinh điện hóa hiệu suất cao.

Từ khóa

#biofilm điện hoạt #bùn hoạt tính #polymer ngoại bào #lysozyme #pin nhiên liệu vi sinh

Tài liệu tham khảo

Ji J, Gao T, Salama ES, El-Dalatony MM, Peng L, Gong Y, Liu P, Li X (2021) Using aspergillus niger whole-cell biocatalyst mycelial aerobic granular sludge to treat pharmaceutical wastewater containing β-lactam antibiotics. Chem Eng J 412:128665. https://doi.org/10.1016/j.cej.2021.128665 Izadi P, Izadi P, Eldyasti A (2021) Holistic insights into extracellular polymeric substance (EPS) in anammosx bacterial matrix and the potential sustainable biopolymer recovery: a review. Chemosphere 274:129703. https://doi.org/10.1016/j.chemosphere.2021.129703 Li Z, Zhang P, Qiu Y, Zhang Z, Wang X, Yu Y, Feng Y (2021) Biosynthetic FeS/BC hybrid particles enhanced the electroactive bacteria enrichment in microbial electrochemical systems. Sci Total Env 762:143142. https://doi.org/10.1016/j.scitotenv.2020.143142 Modestra JA, Reddy C, Krishna K, Min B, Mohan SV (2020) Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell. Renew Energy 149:424–434. https://doi.org/10.1016/j.renene.2019.12.018 Taskan B, Taskan E (2021) Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4. Chemosphere 285:131538. https://doi.org/10.1016/j.chemosphere.2021.131538 Cecconet D, Sabba F, Devecseri M, Callegari A, Capodaglio AG (2020) In situ groundwater remediation with bioelectrochemical systems: a critical review and future perspectives. Env Int 137:105550. https://doi.org/10.1016/j.envint.2020.105550 Logan BE, Rossi R, Ragab A, Saikaly PE (2019) Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microb 17(5):307–319. https://doi.org/10.1038/s41579-019-0173-x Greenman J, Gajda I, You J, Mendis BA, Obata O, Pasternak G, Ieropoulos I (2021) Microbial fuel cells and their electrified biofilms. Biofilm 3:100057. https://doi.org/10.1016/j.bioflm.2021.100057 Zhuang Z, Yang G, Zhuang L (2022) Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm. Sci Total Env 806:150713. https://doi.org/10.1016/j.scitotenv.2021.150713 Wu D, Sun F, Chua F, Zhou Y (2020) Enhanced power generation in microbial fuel cell by an agonist of electroactive biofilm–sulfamethoxazole. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123238 Melo A, Costa J, Quintelas C, Ferreira EC, Mesquita DP (2021) Effect of ibuprofen on extracellular polymeric substances (EPS) production and composition, and assessment of microbial structure by quantitative image analysis. J Env Manage 293:112852. https://doi.org/10.1016/j.jenvman.2021.112852 Chen S, Fang Y, Jing X, Luo H, Chen J, Zhou S (2018) Enhanced electrosynthesis performance of Moorella thermoautotrophica by improving cell permeability. Bioelectrochemistry 121:151–159. https://doi.org/10.1016/j.bioelechem.2018.02.003 Zhang P, Zhou X, Qi R, Gai P, Liu L, Lv F, Wang S (2019) Conductive polymer–exoelectrogen hybrid bioelectrode with improved biofilm formation and extracellular electron transport. Adv—Electronic Mater 5(8):1900320. https://doi.org/10.1002/aelm.201900320 Gomaa OM, Selim N, Fathy R, Maghrawy HH, Gamal M, Kareem HA, Kyazze G, Keshavarz T (2021) Characterization of a biosurfactant producing electroactive Bacillus sp. for enhanced microbial fuel cell dye decolourisation. Enzyme Microb Technol 147:109767. https://doi.org/10.1016/j.enzmictec.2021.109767 Zhou X, Zhai S, Zhao Y, Liu D, Wang Q, Ji M (2021) Rapid recovery of inhibited denitrification with cascade Cr(VI) exposure by bio-accelerant: characterization of chromium distributions, EPS compositions and denitrifying communities. Hazard Mater 411:125087. https://doi.org/10.1016/j.jhazmat.2021.125087 Wang S, Zhi L, Shan W, Lu H, Xu Q, Li J (2020) Correlation of extracellular polymeric substances and microbial community structure in denitrification biofilm exposed to adverse conditions. Microb Biotechnol 13(6):1889–1903. https://doi.org/10.1111/1751-7915.13633 Ray G, Noori M, Ghangrekar M (2017) Novel application of peptaibiotics derived from Trichoderma sp. for methanogenic suppression and enhanced power generation in microbial fuel cells. RSC Adv 7:10707–10717. https://doi.org/10.1039/C6RA27763B Lin ZQ, Shao W, Xu J, Sheng GP (2019) Accurately quantifying the reductive capacity of microbial extracellular polymeric substance by mediated electrochemical oxidation method. Sci Total Env 673:541–545. https://doi.org/10.1016/j.scitotenv.2019.04.130 Shen WR, Zhao X, Wang X, Yang S, Jia X, Yu X, Yang J, Yang Q, Zhao H (2020) Improving the power generation performances of gram-positive electricigens by regulating the peptidoglycan layer with lysozyme. Env Res 185:109463. https://doi.org/10.1016/j.envres.2020.109463 Yang QZ, Zhou B, Liu JW, Shen WR, Jia XD, He XJ, Zhao HZ (2020) Nitrate removal from water via self-flocculation of genetically engineered bacteria. Chem Eng Sci. https://doi.org/10.1016/j.ces.2021.116750 Zhang L, Zhu X, Li J, Liao Q, Liao Q, Ye D (2011) Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. J Power Sources 196(15):6029–6035. https://doi.org/10.1016/j.jpowsour.2011.04.013 Zhang Q, Zhang W, He Q, Li M, Li Y, Huang W (2020) Effects of dissolved oxygen concentrations on a bioaugmented sequencing batch rector treating aniline-laden wastewater: reactor performance, microbial dynamics and functional genes. Bioresour Technol 313:123598. https://doi.org/10.1016/j.biortech.2020.123598 Lian Z, Yang Z, Song W, Sun M, Gan Y, Bai X (2022) Effects of different exogenous cadmium compounds on the chemical composition and adsorption properties of two gram-negative bacterial EPS. Sci Total Env 806:150511. https://doi.org/10.1016/j.scitotenv.2021.150511 Wang D, Pan J, Met Xu, Liu B, Hu J, Hu S, Hou H (2021) Surface modification of shewanella oneidensis MR-1 with polypyrrole-dopamine coating for improvement of power generation in microbial fuel cells. J Power Sources. https://doi.org/10.1016/j.jpowsour.2020.229220 Lin F, Zhu X, Li J, Yu P, Luo Y, Liu M (2019) Effect of extracellular polymeric substances (EPS) conditioned by combined lysozyme and cationic polyacrylamide on the dewatering performance of activated sludge. Chemosphere 235:679–689. https://doi.org/10.1016/j.chemosphere.2019.06.220 Lin F, Li J, Liu M, Yu P, Zhang Z, Zhu X (2020) New insights into the effect of extracellular polymeric substance on the sludge dewaterability based on interaction energy and viscoelastic acoustic response analysis. Chemosphere 261:127929. https://doi.org/10.1016/j.chemosphere.2020.127929 He JG, Xin XD, Qiu W, Zhang J, Wen ZD, Tang J (2014) Performance of the lysozyme for promoting the waste activated sludge biodegradability. Bioresour Technol 170:108–114. https://doi.org/10.1016/j.biortech.2014.07.095 Jia F, Yang Q, Liu X, Li X, Li B, Zhang L, Peng Y (2017) Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms. Env Sci Technol 51:3260–3268. https://doi.org/10.1021/acs.est.6b05761 Stockl M, Teubner NC, Holtmann D, Mangold KM, Sand W (2019) Extracellular polymeric substances from geobacter sulfurreducens biofilms in microbial fuel cells. ACS Appl Mater Interfaces 11:8961–8968. https://doi.org/10.1021/acsami.8b14340 Yang G, Lin J, Zeng EY, Zhuang L (2019) Extraction and characterization of stratified extracellular polymeric substances in geobacter biofilms. Bioresour Technol 276:119–126. https://doi.org/10.1016/j.biortech.2018.12.100 Xiao Y, Zhao F (2017) Electrochemical roles of extracellular polymeric substances in biofilms. Curr Opin Electrochem 4:206–211. https://doi.org/10.1016/j.coelec.2017.09.016 Liu Y, Climent V, Berná A, Feliu JM (2011) Effect of temperature on the catalytic ability of electrochemically active biofilm as anode catalyst in microbial fuel cells. Electroanalysis 23:387–394. https://doi.org/10.1002/elan.201000499 Molognoni D, Puig S, Balaguer MD, Capodaglio AG, Callegari A, Colprim J (2016) Multiparametric control for enhanced biofilm selection in microbial fuel cells. J Chem Technol Biotechnol 91(6):1720–1727. https://doi.org/10.1002/jctb.4760 Modestra JA, Mohan SV (2014) Bio-electrocatalyzed electron efflux in gram positive and gram negative bacteria: an insight into disparity in electron transfer kinetics. RSC Adv 4(64):34045–34055. https://doi.org/10.1039/c4ra03489a Sathishkumar K, Li Y, Sanganyado E (2020) Electrochemical behavior of biochar and its effects on microbial nitrate reduction: role of extracellular polymeric substances in extracellular electron transfer. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125077 Tsuneda S, Aikawa H, Hayashi H, Yuasa A, Hirata A (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microb Lett 223:287–292. https://doi.org/10.1016/S0378-1097(03)00399-9 Li Y, Xin M, Xie D, Fan S, Ma J, Liu K, Yu F (2021) Variation in extracellular polymeric substances from Enterobacter sp. and their Pb(2+) adsorption behaviors. ACS Omega 6:9617–9628. https://doi.org/10.1021/acsomega.1c00185 Arabski M, Konieczna I, Tusinska E, Wasik S, Relich I, Zajac K, Zbigniew Z, Kaca W (2015) The use of lysozyme modified with fluorescein for the detection of gram-positive bacteria. Microb Res 170:242–247. https://doi.org/10.1016/j.micres.2014.05.004 Luo J, Li M, Zhou M, Hu Y (2015) Characterization of a novel strain phylogenetically related to Kocuria rhizophila and its chemical modification to improve performance of microbial fuel cells. Biosens Bioelectron 69:113–120. https://doi.org/10.1016/j.bios.2015.02.025 Gustave W, Yuan ZF, Sekar R, Toppin V, Liu JY, Ren YX, Zhang J, Chen Z (2019) Relic DNA does not obscure the microbial community of paddy soil microbial fuel cells. Res Microb 170(2):97–104. https://doi.org/10.1016/j.resmic.2018.11.002 Alatraktchi FAa, Zhang Y, Angelidaki I (2014) Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community. Appl Energy 116:216–222. https://doi.org/10.1016/j.apenergy.2013.11.058 Chen G-W, Choi S-J, Cha J-H, Lee TH, Kim CW (2010) Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells. Korean J Chem Eng 27:1513–1520. https://doi.org/10.1007/s11814-010-0231-6 Jiang Q, Xing D, Sun R, Zhang L, Feng Y, Ren N (2016) Anode biofilm communities and the performance of microbial fuel cells with different reactor configurations. RSC Adv 6:85149–85155. https://doi.org/10.1039/C6RA08790F Kim GT, Webster G, Wimpenny JW, Kim BH, Kim HJ, Weightman AJ (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microb 101:698–710. https://doi.org/10.1111/j.1365-2672.2006.02923.x Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to clostridium butyricum Isolated from a microbial fuel cell. Anaerobe 7:297–306. https://doi.org/10.1006/anae.2001.0399