Lymphocytes from chronic lymphocytic leukaemia undergo ABL1-linked amoeboid motility and homotypic interaction as an early adaptive change to ex vivo culture
Tóm tắt
Those stimuli that together promote the survival, differentiation and proliferation of the abnormal B-lymphocytes of chronic lymphocytic leukaemia (CLL) are encountered within tissues, where together they form the growth-supporting microenvironment. Different tissue-culture systems promote the survival of the neoplastic lymphocytes from CLL, partly replicating the in vivo tissue environment of the disorder. In the present study, we focussed on the initial adaptive changes to the tissue culture environment focussing particularly on migratory behaviour and cellular interactions. A high-density CLL culture system was employed to test CLL cell-responses using a range of microscopic techniques and flow cytometric analyses, supported by mathematical measures of cell shape-change and by biochemical techniques. The study focussed on the evaluation of changes to the F-actin cytoskeleton and cell behaviour and on ABL1 signalling processes. We showed that the earliest functional response by the neoplastic lymphocytes was a rapid shape-change caused through rearrangement of the F-actin cytoskeleton that resulted in amoeboid motility and promoted frequent homotypic interaction between cells. This initial response was functionally distinct from the elongated motility that was induced by chemokine stimulation, and which also characterised heterotypic interactions between CLL lymphocytes and accessory cells at later culture periods. ABL1 is highly expressed in CLL lymphocytes and supports their survival, it is also recognised however to have a major role in the control of the F-actin cytoskeleton. We found that the cytoplasmic fraction of ABL1 became co-localised with F-actin structures of the CLL lymphocytes and that the ABL1 substrate CRKL became phosphorylated during initial shape-change. The ABL-inhibitor imatinib mesylate prevented amoeboid movement and markedly reduced homotypic interactions, causing cells to acquire a globular shape to rearrange F-actin to a microvillus form that closely resembled that of CLL cells isolated directly from circulation. We suggest that ABL1-induced amoeboid motility and homotypic interaction represent a distinctive early response to the tissue environment by CLL lymphocytes. This response is separate from that induced by chemokine or during heterotypic cell-contact, and may play a role in the initial entry and interactions of CLL lymphocytes in tissues.
Tài liệu tham khảo
Bertilaccio MT, Scielzo C, Muzio M, Caligaris-Cappio F: An overview of chronic lymphocytic leukaemia biology. Best Pract Res Clin Haematol 2010,23(1):21–32. 10.1016/j.beha.2009.12.005
Ghia P, Circosta P, Scielzo C, Vallario A, Camporeale A, Granziero L, Caligaris-Cappio F: Differential effects on CLL cell survival exerted by different microenvironmental elements. Current topics in microbiology and immunology 2005, 294: 135–145.
Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ: Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 2000,96(8):2655–2663.
Catera R, Silverman GJ, Hatzi K, Seiler T, Didier S, Zhang L, Hervé M, Meffre E, Oscier DG, Vlassara H, Scofield RH, Chen Y, Allen SL, Kolitz J, Rai KR, Chu CC, Chiorazzi N: Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Molecular Medicine 2008,14(11–12):665–674.
Ghiotto F, Fais F, Valetto A, Albesiano E, Hashimoto S, Dono M, Ikematsu H, Allen SL, Kolitz J, Rai KR, Nardini M, Tramontano A, Ferrarini M, Chiorazzi N: Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. The Journal of clinical investigation 2004,113(7):1008–1016. 10.1172/JCI19399
Pettitt AR, Moran EC, Cawley JC: Homotypic interactions protect chronic lymphocytic leukaemia cells from spontaneous death in vitro. Leuk Res 2001,25(11):1003–1012. 10.1016/S0145-2126(01)00067-4
Norin S, Kimby E, Lundin J: Tumor burden status evaluated by computed tomography scan is of prognostic importance in patients with chronic lymphocytic leukemia. Med Oncol 2010,27(3):820–825. 10.1007/s12032-009-9292-y
Soma LA, Craig FE, Swerdlow SH: The proliferation center microenvironment and prognostic markers in chronic lymphocytic leukemia/small lymphocytic lymphoma. Hum Pathol 2006,37(2):152–159. 10.1016/j.humpath.2005.09.029
Till KJ, Spiller DG, Harris RJ, Chen H, Zuzel M, Cawley JC: CLL, but not normal, B cells are dependent on autocrine VEGF and alpha4beta1 integrin for chemokine-induced motility on and through endothelium. Blood 2005,105(12):4813–4819. 10.1182/blood-2004-10-4054
Schulz A, Toedt G, Zenz T, Stilgenbauer S, Lichter P, Seiffert M: Inflammatory cytokines and signaling pathways are associated with survival of primary chronic lymphocytic leukemia cells in vitro: a dominant role of CCL2. Haematologica 2011,96(3):408–416. 10.3324/haematol.2010.031377
Herishanu Y, Pérez-Galán P, Liu D, Biancotto A, Pittaluga S, Vire B, Gibellini F, Njuguna N, Lee E, Stennett L, Raghavachari N, Liu P, McCoy JP, Raffeld M, Stetler-Stevenson M, Yuan C, Sherry R, Arthur DC, Maric I, White T, Marti GE, Munson P, Wilson WH, Wiestner A: The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011,117(2):563–574. 10.1182/blood-2010-05-284984
Carrasco YR: Molecular and cellular dynamics at the early stages of antigen encounter: the B-cell immunological synapse. Curr Top Microbiol Immunol 2010, 340: 51–62.
Bradley WD, Koleske AJ: Regulation of cell migration and morphogenesis by Abl-family kinases: emerging mechanisms and physiological contexts. J Cell Sci 2009,122(Pt 19):3441–3454.
Lin K, Glenn MA, Harris RJ, Duckworth AD, Dennett S, Cawley JC, Zuzel M, Slupsky JR: c-Abl expression in chronic lymphocytic leukemia cells: clinical and therapeutic implications. Cancer research 2006,66(15):7801–7809. 10.1158/0008-5472.CAN-05-3901
Okuda K, Weisberg E, Gilliland DG, Griffin JD: ARG tyrosine kinase activity is inhibited by STI571. Blood 2001,97(8):2440–2448. 10.1182/blood.V97.8.2440
Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG, Keating MJ, O'Brien S, Chiorazzi N, Burger JA: The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012,119(5):1182–1189. 10.1182/blood-2011-10-386417
Terzakis JA: Distinguishing B and T lymphocytes by scanning electron microscopy. Ultrastruct Pathol 2000,24(4):205–209. 10.1080/01913120050176653
Vincent AM, Cawley JC, Burthem J: Integrin function in chronic lymphocytic leukaemia. Blood 1995,86(10):3366.
Redondo-Munoz J, Escobar-Diaz E, Samaniego R, Terol MJ, Garcia-Marco JA, Garcia-Pardo A: MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by alpha4beta1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood 2006,108(9):3143–3151. 10.1182/blood-2006-03-007294
Gorgun G, Holderried TA, Zahrieh D, Neuberg D, Gribben JG: Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest 2005,115(7):1797–1805. 10.1172/JCI24176
Worthylake RA, Lemoine S, Watson JM, Burridge K: RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 2001,154(1):147–160. 10.1083/jcb.200103048
Schrottner P, Leick M, Burger M: The role of chemokines in B cell chronic lymphocytic leukaemia: pathophysiological aspects and clinical impact. Ann Hematol 2010,89(5):437–446. 10.1007/s00277-009-0876-6
Huang Y, Comiskey EO, Dupree RS, Li S, Koleske AJ, Burkhardt JK: The c-Abl tyrosine kinase regulates actin remodeling at the immune synapse. Blood 2008,112(1):111–119. 10.1182/blood-2007-10-118232
Brown MJ, Nijhara R, Hallam JA, Gignac M, Yamada KM, Erlandsen SL, Delon J, Kruhlak M, Shaw S: Chemokine stimulation of human peripheral blood T lymphocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization. Blood 2003,102(12):3890–3899. 10.1182/blood-2002-12-3807
Majstoravich S, Zhang J, Nicholson-Dykstra S, Linder S, Friedrich W, Siminovitch KA, Higgs HN: Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood 2004,104(5):1396–1403. 10.1182/blood-2004-02-0437
Tsukada N, Burger JA, Zvaifler NJ, Kipps TJ: Distinctive features of “nurselike” cells that differentiate in the context of chronic lymphocytic leukemia. Blood 2002,99(3):1030–1037. 10.1182/blood.V99.3.1030
Parri M, Chiarugi P: Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 2010, 8: 23. 10.1186/1478-811X-8-23
Doh J, Krummel MF: Immunological synapses within context: patterns of cell-cell communication and their application in T-T interactions. Curr Top Microbiol Immunol 2010, 340: 25–50.
Mempel TR, Henrickson SE, von Andrian UH: T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 2004,427(6970):154–159. 10.1038/nature02238
Miller AL, Wang Y, Mooseker MS, Koleske AJ: The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion. J Cell Biol 2004,165(3):407–419. 10.1083/jcb.200308055
Echarri A, Lai MJ, Robinson MR, Pendergast AM: Abl interactor 1 (Abi-1) wave-binding and SNARE domains regulate its nucleocytoplasmic shuttling, lamellipodium localization, and wave-1 levels. Mol Cell Biol 2004,24(11):4979–4993. 10.1128/MCB.24.11.4979-4993.2004
Ideses Y, Brill-Karniely Y, Haviv L, Ben-Shaul A, Bernheim-Groswasser A: Arp2/3 branched actin network mediates filopodia-like bundles formation in vitro. PLoS One 2008,3(9):e3297. 10.1371/journal.pone.0003297
Nolz JC, Nacusi LP, Segovis CM, Medeiros RB, Mitchell JS, Shimizu Y, Billadeau DD: The WAVE2 complex regulates T cell receptor signaling to integrins via Abl- and CrkL-C3G-mediated activation of Rap1. J Cell Biol 2008,182(6):1231–1244. 10.1083/jcb.200801121
McCaig AM, Cosimo E, Leach MT, Michie AM: Dasatinib inhibits B cell receptor signalling in chronic lymphocytic leukaemia but novel combination approaches are required to overcome additional pro-survival microenvironmental signals. British Journal of Haematology 2011,153(2):199–211. 10.1111/j.1365-2141.2010.08507.x
Song Z, Lu P, Furman RR, Leonard JP, Martin P, Tyrell L, Lee FY, Knowles DM, Coleman M, Wang YL: Activities of SYK and PLCgamma2 predict apoptotic response of CLL cells to SRC tyrosine kinase inhibitor dasatinib. Clin Cancer Res 2010,16(2):587–599. 10.1158/1078-0432.CCR-09-1519
Veldurthy A, Patz M, Hagist S, Pallasch CP, Wendtner CM, Hallek M, Krause G: The kinase inhibitor dasatinib induces apoptosis in chronic lymphocytic leukemia cells in vitro with preference for a subgroup of patients with unmutated IgVH genes. Blood 2008,112(4):1443–1452. 10.1182/blood-2007-11-123984
Chow KU, Nowak D, Hofmann W, Schneider B, Hofmann WK: Imatinib induces apoptosis in CLL lymphocytes with high expression of Par-4. Leukemia 2005,19(6):1103–1105. author reply 5–6; discussion 6–7 10.1038/sj.leu.2403739
Allen JC, Talab F, Zuzel M, Lin K, Slupsky JR: c-Abl regulates Mcl-1 gene expression in chronic lymphocytic leukemia cells. Blood 2010,117(8):2414–2422.
Fisher DC, Lacasce AS, Jacobsen ED, Armand P, Hasserjian RP, Werner L, Neuberg D, Brown JR: Phase II study of dasatinib in relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res 2011,17(9):2977–2986. 10.1158/1078-0432.CCR-10-2879
Burthem J, Baker PK, Hunt JA, Cawley JC: Hairy cell interactions with extracellular matrix: expression of specific integrin receptors and their role in the cell’s response to specific adhesive proteins. Blood 1994,84(3):873–882.