Lyapunov-Based Nonlinear Disturbance Observer for Serial n-Link Robot Manipulators
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chen, W.H., Balance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000). doi: 10.1109/41.857974
Tsai, M.C., Tomizuka, M.: Model reference adaptive control for robot manipulators-continuous time theory and digital implementation. Symposium on Robotics 11, 199–209 (1988)
Tung, P.C., Wang, S.R., Hong, F.Y.: Application of MRAC theory for adaptive control of a constrained robot manipulator. Int. J. Mach. Tools Manuf. 40(14), 2083–2097 (2000). doi: 10.1016/S0890-6955(00)00034-1
Cortesao, R.: On Kalman active observers. J. Intell. Robot. Syst. 48(2), 131–155 (2007). doi: 10.1007/s10846-006-9045-5
Lefebvre, T., Bruyninckx, H., Schutter, J.D.: Online statistical model recognition and state estimation for autonomous compliant motion. IEEE Trans. Syst. Man Cybern. 35(1), 16–39 (2005). doi: 10.1109/TSMCC.2004.840053
Parlakci, M.N.A., Jafaroy, E.M., Istefanopulos, Y.: New variable structure PD-controllers design for robot manipulators with parameter perturbations. Int. J. Robot. Autom. 19(3), 134–142 (2004)
Liang, Y.W., Xu, S.D., Chu, T.C.: Robust control of the robot manipulator via an improved sliding mode scheme. IEEE International Conference on Mechatronics and Automation, pp. 1593–1598 (2007)
Khelfi, M.F., Abdessameud, A.: Robust H-infinity trajectory tracking controller for a 6 Dof PUMA 560 robot manipulator. IEEE Int. Conf. Electric Mach. Drives 1, 88–94 (2007)
Siqueira, A.A.G., Terra, M.H., Maciel, B.C.O.: Nonlinear mixed H2/H-infinity control applied to manipulators via actuation redundancy. Control Eng. Pract. 14, 327–335 (2006). doi: 10.1016/j.conengprac.2004.12.019
Eom, K.S., Suh, I.H., Chung, W.K.: Disturbance observer based path tracking control of robot manipulator considering torque saturation. International Conference on Advanced Robotics, pp. 651–657 (1997)
Liu, Z.L., Svoboda, L.: A new control scheme for nonlinear systems with disturbances. IEEE Trans. Contr. Syst. Technol. 14(1), 176–181 (2006). doi: 10.1109/TCST.2005.860510
Komada, S., Machii, N., Hori, T.: Control of redundant manipulators considering order of disturbance observer. IEEE Trans. Ind. Electron. 47(2), 413–420 (2000). doi: 10.1109/41.836357
Radke, A., Gao, Z.: A survey of state and disturbance observers for practitioners. In: Proceedings of the American Control Conference ACC/IEEE (2006)
Park, S.K., Lee, S.H.: Disturbance observer based robust control for industrial robots with flexible joints. International Conference on Control, Automation and Systems, pp. 584–589 (2007)
Nakao, M., Ohnishi, K., Miyachi, K.: A robust decentralized joint control based on interference estimation. IEEE Int. Conf. Robot. Autom. 4, 326–331 (1987)
Kaneko, K., Ohnishi, K., Komoriya, K.: A design method for manipulator control based on disturbance observer. Int. Conf. Robot. Syst. 2, 1405–1412 (1994)
Ohnishi, K.: Industry applications of disturbance observer. International Conference on Recent Advances in Mechatronics, pp. 72–77 (1995)
Katsura, S., Matsumoto, Y., Ohnishi, K.: Analysis and experimental validation of force bandwidth for force control. IEEE Trans. Electron. 53(3), 922–928 (2006). doi: 10.1109/TIE.2006.874262
Piraisoodi, T., Sadhu, S.: Characteristic analysis of high order disturbance observer. IEEE INDICON, pp. 431–436 (2005)
Bickel, R.J., Tomizuka, M.: Disturbance observer based hybrid impedance control. In: Proceedings of the American Control Conference (1995)
Kim, B.K., Chung, W.K.: Advanced disturbance observer design for mechanical positioning systems. IEEE Trans. Ind. Electron. 50(6), 1207–1216 (2003). doi: 10.1109/TIE.2003.819695
Chen, X., Zhai, G., Fukuda, T.: An approximate inverse system for nonminimum phase systems and its application to disturbance observer. J. Syst. Contr. Lett. 52(3–4), 193–207 (2004). doi: 10.1016/j.sysconle.2003.11.011
Yang, Z.J., Tsubakihara, H., Kanae, S., Wada, K., Su, C.Y.: A novel robust nonlinear motion controller with disturbance observer. IEEE International Conference on Control Applications, pp. 320–325 (2006)
Shahruz, S.M.: Performance enhancement of a class of nonlinear systems by disturbance observers. IEEE/ASME Trans. Mechatron. 5(3), 319–323 (2000)
Kravaris, C., Sotiropoulos, V., Georgiou, C., Kazantzis, N., Xiao, M., Krener, A.J.: Nonlinear observer design for state and disturbance estimation. J. Syst. Contr. Lett. 56, 730–735 (2007). doi: 10.1016/j.sysconle.2007.05.001
Xiong, Y., Saif, M.: Unknown Disturbance inputs estimation based on a state functional observer design. Automatica 39, 1389–1398 (2003). doi: 10.1016/S0005-1098(03)00087-6
Kosaka, Y., Shimada, A., Viboonchaicheep, P.: Vibration control without estimated disturbance feedback for robot manipulators. IECON’03 1, 848–853 (2003)
Lu, Y.S., Cheng, C.M.: Disturbance-observer-based repetitive control with sliding modes. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1360–1365 (2005)
Fei, Y.N., Smith, J.S., Wu, Q.H.: Sliding mode control of robot manipulators based on sliding mode perturbation observation. J. Syst. Contr. Eng. 220(3), 201–210 (2006)
Dabroom, A.M., Khalil, H.K.: Output feedback sampled-data control of nonlinear systems using high-gain observers. IEEE Trans. Automat. Contr. 46(11), 1712–1725 (2001). doi: 10.1109/9.964682
Freidovich, L.B., Khalil, H.K.: Robust feedback linearization using extended high-gain observers. In: Proceedings of the 45th IEEE Conference on Decision & Control, pp. 983–988 (2006)