Lupeol and Paclitaxel cooperate in hindering hypoxia induced vasculogenic mimicry via suppression of HIF-1α-EphA2-Laminin-5γ2 network in human oral cancer
Tóm tắt
Vasculogenic mimicry (VM), defined as an endothelial cell independent alternative mechanism of blood and nutrient supply by dysregulated tumor cells, is associated with poor prognosis in oral squamous cell carcinoma (OSCC). Here we aim to investigate the underlying molecular mechanism of the synergistic effect of phytochemical Lupeol and standard microtubule inhibitor Paclitaxel in reversing the hypoxia induced VM formation in OSCC. The results demonstrated that the hypoxia induced upregulation of HIF-1α led to augmentation of signaling cascade associated with extracellular matrix remodeling and EMT phenotypes that are mechanistically linked to VM. Induction of HIF-1α altered the expression of EMT/CSC markers (E-Cadherin, Vimentin, Snail, Twist and CD133) and enhanced the ability of cell migration/invasion and spheroid formation. Subsequently, the targeted knockdown of HIF-1α by siRNA led to the perturbation of matrigel mediated tube formation as well as of Laminin-5γ2 expression with the down-regulation of VE-Cadherin, total and phosphorylated (S-897) EphA2, pERK1/2 and MMP2. We also observed that Lupeol in association with Paclitaxel resulted to apoptosis and the disruption of VM associated phenotypes in vitro. We further validated the impact of this novel interventional approach in a patient derived tumor explant culture model of oral malignancy. The ex vivo tumor model mimicked the in vitro anti-VM potential of Lupeol-Paclitaxel combination through down-regulating HIF-1α/EphA2/Laminin-5γ2 cascade. Together, our findings elucidated mechanistic underpinning of hypoxia induced Laminin-5γ2 driven VM formation highlighting that Lupeol-Paclitaxel combination may serve as novel therapeutic intervention in perturbation of VM in human OSCC.
Tài liệu tham khảo
Ahn MJ, D’Cruz A, Vermorken JB, Chen JP, Chitapanarux I, Dang HQT, Guminski A, Kannarunimi D, Lin TY, Ng WT (2016) Clinical recommendations for defining platinum unsuitable head and neck cancer patient populations on chemoradiotherapy: a literature review. Oral Oncol 53:10–16. https://doi.org/10.1016/j.oraloncology.2015.11.019
Almahmoudi R, Salem A, Hadler-Olsen E, Svineng G, Salo T, Al-Samadi A (2021) The effect of interleukin-17F on vasculogenic mimicry in oral tongue squamous cell carcinoma. Cancer Sci 112:2223–2232. https://doi.org/10.1111/cas.14894
Al-Rehaily AJ, El-Tahir KEH, Mossa JS, Rafatullah S (2001) Pharmacological studies of various extracts and the major constituent, Lupeol, obtained from hexane extract of Teclea nobilis in rodents. Nat Prod Sci 7:76–82
Barathan M, Zulpa AK, Mee Hoong S, Vellasamy KM, Vadivelu J (2021) Synergistic effect of hyperforin and Paclitaxel on growth inhibition, apoptotic mediator activation in MCF-7 human breast cancer cells. J Taibah Univ Sci 15:918–927. https://doi.org/10.1080/16583655.2021.2010910
Bedal KB, Grässel S, Spanier G, Reichert TE, Bauer RJ (2015) The NC11 domain of human collagen XVI induces vasculogenic mimicry in oral squamous cell carcinoma cells. Carcinogenesis 36:1429–1439. https://doi.org/10.1093/carcin/bgv141
Belotti D, Pinessi D, Taraboletti G (2021) Alternative vascularization mechanisms in tumor resistance to therapy. Cancers (basel) 13:1912. https://doi.org/10.3390/cancers13081912
Bhattacharyya S, Sekar V, Majumde B, Mehrotra DG, Banerjee S, Bhowmick AK, Alam N, Mandal GK, Biswas J, Majumder PK (2017) CDKN2A-p53 mediated antitumor effect of Lupeol in head and neck cancer. Cell Oncol (dordr) 40:145–155. https://doi.org/10.1007/s13402-016-0311-7
Bhattacharyya S, Mitra D, Ray S, Biswas N, Banerjee S, Majumder B, Mustafi SM, Murmu N (2019) Reversing effect of Lupeol on vasculogenic mimicry in murine melanoma progression. Microvasc Res 121:52–62. https://doi.org/10.1016/j.mvr.2018.10.008
Bociort F, Macasoi IG, Marcovici I, Motoc A, Grosu C, Pinzaru I, Petean C, Avram S, Dehelean CA (2021) Investigation of lupeol as anti-melanoma agent: an in vitro-in Ovo perspective. Curr Oncol 28:5054–5066. https://doi.org/10.3390/curroncol28060425
Borse V, Konwar AN, Buragohain P (2020) Oral cancer diagnosis and perspectives in India. Sens Int 1:100046. https://doi.org/10.1016/j.sintl.2020.100046
Che S, Wu S, Yu P (2022) Lupeol induces autophagy and apoptosis with reduced cancer stem-like properties in retinoblastoma via phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin inhibition. J Pharm Pharmacol 74:208–215. https://doi.org/10.1093/jpp/rgab060
Chen Q, Lin W, Yin Z, Zou Y, Liang S, Ruan S, Chen P, Li S, Shu Q, Cheng B (2019) Melittin inhibits hypoxia-induced vasculogenic mimicry formation and epithelial-mesenchymal transition through suppression of HIF-1α/Akt pathway in liver cancer. Evid Based Complement Alternat Med 2019:9602935. https://doi.org/10.1155/2019/9602935
Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947
Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés OFJ (2017) Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer 16:65. https://doi.org/10.1186/s12943-017-0631-x
Duan S (2018) Silencing the autophagy-specific gene Beclin-1 contributes to attenuated hypoxia-induced vasculogenic mimicry formation in glioma. Cancer Biomark 21:565–574. https://doi.org/10.3233/CBM-170444
Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M (2021) The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 21:62. https://doi.org/10.1186/s12935-020-01719-5
Folberg R, Maniotis AJ (2004) Vasculogenic mimicry. APMIS 112(7–8):508–525. https://doi.org/10.1111/j.1600-0463.2004.apm11207-0810.x
Fu R, Du W, Ding Z, Wang Y, Li Y, Zhu J, Zeng Y, Zheng Y, Liu Z, Huang J (2021) HIF-1α promoted vasculogenic mimicry formation in lung adenocarcinoma through NRP1 upregulation in the hypoxic tumor microenvironment. Cell Death Dis 12:1–11. https://doi.org/10.1038/s41419-021-03682-z
Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, Schatteman GC, Seftor RE (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci U S A 98:8018–8023. https://doi.org/10.1073/pnas.131209798
Hernández de la Cruz ON, López-González JS, García-Vázquez R, Salinas-Vera YM, Muñiz-Lino MA, Aguilar-Cazares D, López-Camarillo C, Carlos-Reyes Á (2020) Regulation networks driving vasculogenic mimicry in solid tumors. Front Oncol 9:1419. https://doi.org/10.3389/fonc.2019.01419
Hess AR, Seftor EA, Gruman LM, Kinch MS, Seftor REB, Hendrix MJC (2006) VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry. Cancer Biol Ther 5:228–233. https://doi.org/10.4161/cbt.5.2.2510
Hong KO, Oh KY, Yoon HJ, Swarup N, Jung M, Shin JA, Kim JH, Chawla K, Lee JI, Cho SD (2021) SOX7 blocks vasculogenic mimicry in oral squamous cell carcinoma. J Oral Pathol Med 50:766–775. https://doi.org/10.1111/jop.13176
Horwitz SB (1994) Taxol (Paclitaxel): mechanisms of action. Ann Oncol 5(Suppl 6):S3-6
Hujanen R, Almahmoudi R, Salo T, Salem A (2021) Comparative analysis of vascular mimicry in head and neck squamous cell carcinoma in vitro and in vivo approaches. Cancers 13:4747. https://doi.org/10.3390/cancers13194747
Jue C, Lin C, Zhisheng Z, Yayun Q, Feng J, Min Z, Haibo W, Youyang S, Hisamitsu T, Shintaro I (2017) Notch1 promotes vasculogenic mimicry in hepatocellular carcinoma by inducing EMT signaling. Oncotarget 8:2501–2513. https://doi.org/10.18632/oncotarget.12388
Larson AR, Lee CW, Lezcano C, Zhan Q, Huang J, Fischer AH, Murphy GF (2014) Melanoma spheroid formation involves laminin-associated vasculogenic mimicry. Am J Pathol 184:71–78. https://doi.org/10.1016/j.ajpath.2013.09.020
Lee TY, Tseng YH (2020) The potential of phytochemicals in oral cancer prevention and therapy: a review of the evidence. Biomolecules 10:E1150. https://doi.org/10.3390/biom10081150
Lee TK, Poon RTP, Wo JY, Ma S, Guan XY, Myers JN, Altevogt P, Yuen APW (2007) Lupeol suppresses cisplatin-induced nuclear factor-kappaB activation in head and neck squamous cell carcinoma and inhibits local invasion and nodal metastasis in an orthotopic nude mouse model. Cancer Res 67:8800–8809. https://doi.org/10.1158/0008-5472.CAN-07-0801
Li W, Zhou Y (2019) LRIG1 acts as a critical regulator of melanoma cell invasion, migration, and vasculogenic mimicry upon hypoxia by regulating EGFR/ERK-triggered epithelial-mesenchymal transition. Biosci Rep 39:bsr20181165
Li X, Yang Z, Han Z, Wen Y, Ma Z, Wang Y (2018) Niclosamide acts as a new inhibitor of vasculogenic mimicry in oral cancer through upregulation of miR-124 and downregulation of STAT3. Oncol Rep 39:827–833. https://doi.org/10.3892/or.2017.6146
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J (2021) Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res 164:105373. https://doi.org/10.1016/j.phrs.2020.105373
Liu R, Wang HL, Deng MJ, Wen XJ, Mo YY, Chen FM, Zou CL, Duan WF, Li L, Nie X (2018) Melatonin inhibits reactive oxygen species-driven proliferation, epithelial-mesenchymal transition, and vasculogenic mimicry in oral cancer. Oxid Med Cell Longev 2018:3510970. https://doi.org/10.1155/2018/3510970
Liu Y, Mei L, Yu Q, Xu C, Qiu Y, Yang Y, Shi K, ZhangQ GH, Zhang Z (2015) Multifunctional tandem peptide modified paclitaxel-loaded liposomes for the treatment of vasculogenic mimicry and cancer stem cells in malignant glioma. ACS Appl Mater Interfaces 7:16792–16801. https://doi.org/10.1021/acsami.5b04596
Lu XS, Sun W, Ge CY, Zhang WZ, Fan YZ (2013) Contribution of the PI3K/MMPs/Ln-5γ2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. Int J Oncol 42:2103–2115. https://doi.org/10.3892/ijo.2013.1897
Majumder B, Baraneedharan U, Thiyagarajan S, Radhakrishnan P, Narasimhan H, Dhandapani M, Brijwani N, Pinto DD, Prasath A, Shanthappa BU (2015) Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun 6:6169. https://doi.org/10.1038/ncomms7169
Malekinejad F, Kheradmand F, Khadem-Ansari MH, Malekinejad H (2022) Lupeol synergizes with doxorubicin to induce anti-proliferative and apoptotic effects on breast cancer cells. Daru. https://doi.org/10.1007/s40199-022-00436-w
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715. https://doi.org/10.1016/j.cell.2008.03.027
Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LMG, Pe’er J, Trent JM, Meltzer PS, Hendrix MJC (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752
Maroufi NF, Amiri M, Dizaji BF, Vahedian V, Akbarzadeh M, Roshanravan N, Haiaty S, Nouri M, Rashidi MR (2020) Inhibitory effect of melatonin on hypoxia-induced vasculogenic mimicry via suppressing epithelial-mesenchymal transition (EMT) in breast cancer stem cells. Eur J Pharmacol 881:173282. https://doi.org/10.1016/j.ejphar.2020.173282
Min TR, Park HJ, Ha KT, Chi GY, Choi YH, Park SH (2019) Suppression of EGFR/STAT3 activity by lupeol contributes to the induction of the apoptosis of human non-small cell lung cancer cells. Int J Oncol 55:320–330. https://doi.org/10.3892/ijo.2019.4799
Mitra D, Bhattacharyya S, Alam N, Sen S, Mitra S, Mandal S, Vignesh S, Majumder B, Murmu N (2020) Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast. Breast Cancer Res Treat 179:359–370. https://doi.org/10.1007/s10549-019-05482-8
Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (auckland, N.z.) 3:83–92. https://doi.org/10.2147/HP.S93413
Nyaboke HO, Moraa M, Omosa LK, Mbaveng AT, Vaderament-Alexe, NN, Masila V, Okemwa E, Efferth T, Kuete V (2018) Cytotoxicity of Lupeol from the Stem Bark of Zanthoxylum gilletii against Multi-factorial Drug Resistant Cancer Cell Lines.
Panji M, Behmard V, Zare Z, Malekpour M, Nejadbiglari H, Yavari S, Nayerpourdizaj T, Safaeian A, Bakhshi A, Abazari O (2021) Synergistic effects of green tea extract and Paclitaxel in the induction of mitochondrial apoptosis in ovarian cancer cell lines. Gene 787:145638. https://doi.org/10.1016/j.gene.2021.145638
Patel U, Pandey M (2020) Kannan S (2020) Prognostic and predictive significance of nuclear HIF1α expression in locally advanced HNSCC patients treated with chemoradiation with or without nimotuzumab. Br J Cancer 123:1757–1766. https://doi.org/10.1038/s41416-020-01064-4
Patočka J (2003) Biologically active pentacyclic triterpenes and their current medicine signification. J Appl Biomed 1:7–12. https://doi.org/10.32725/jab.2003.002
Pezzani R, Salehi B, Vitalini S, Iriti M, Zuñiga FA, Sharifi-Rad J, Martorell M, Martins N (2019) Synergistic effects of plant derivatives and conventional chemotherapeutic agents: an update on the cancer perspective. Medicina (kaunas) 55:110. https://doi.org/10.3390/medicina55040110
Pezzuto A, Carico E (2018) Role of HIF-1 in cancer progression: novel insights. A Review Curr Mol Med 18(6):343–351. https://doi.org/10.2174/1566524018666181109121849
Pitchai D, Roy A, Ignatius C (2014) In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line. J Adv Pharm Technol Res 5:179–184
Rauth S, Ray S, Bhattacharyya S, Mehrotra DG, Alam N, Mondal G, Nath P, Roy A, Biswas J, Murmu N (2016) Lupeol evokes anticancer effects in oral squamous cell carcinoma by inhibiting oncogenic EGFR pathway. Mol Cell Biochem 417:97–110. https://doi.org/10.1007/s11010-016-2717-y
Ray S, Saha D, Alam N, Mitra Mustafi S, Mandal S, Sarkar A, Majumder B, Murmu N (2021) Exposure to chewing tobacco promotes primary oral squamous cell carcinoma and regional lymph node metastasis by alterations of SDF1α/CXCR4 axis. Int J Exp Pathol 102:80–92. https://doi.org/10.1111/iep.12386
Ren HY, Shen JX, Mao XM, Zhang XY, Zhou P, Li SY, Zheng ZW, Shen DY, Meng JR (2019) Correlation between tumor vasculogenic mimicry and poor prognosis of human digestive cancer patients: a systematic review and meta-analysis. Pathol Oncol Res 25:849–858. https://doi.org/10.1007/s12253-018-0496-3
Rousselle P, Scoazec JY (2020) Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol 62:149–165. https://doi.org/10.1016/j.semcancer.2019.09.026
Saha D, Mitra D, Alam N, Sen S, Mitra Mustafi S, Mandal S, Majumder B, Murmu N (2022) Orchestrated expression of vasculogenic mimicry and laminin-5γ2 is an independent prognostic marker in oral squamous cell carcinoma. Int J Exp Pathol 103:54–64. https://doi.org/10.1111/iep.12430
Saleem M (2009) Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett 285:109–115. https://doi.org/10.1016/j.canlet.2009.04.033
Sawatani Y, Komiyama Y, Nakashiro KI, Uchida D, Fukumoto C, Shimura M, Hasegawa T, Kamimura R, Hitomi-Koide M, Hyodo T (2020) Paclitaxel potentiates the anticancer effect of cetuximab by enhancing antibody-dependent cellular cytotoxicity on oral squamous cell carcinoma cells in vitro. Int J Mol Sci 21:E6292. https://doi.org/10.3390/ijms21176292
Sinha K, Chowdhury S, Banerjee S, Mandal B, Mandal M, Majhi S, Brahmachari G, Ghosh J, Sil PC (2019) Lupeol alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics. Heliyon 5:e02107. https://doi.org/10.1016/j.heliyon.2019.e02107
Sun H, Yao N, Cheng S, Li L, Liu S, Yang Z, Shang G, Zhang D, Yao Z (2019) Cancer stem-like cells directly participate in vasculogenic mimicry channels in triple-negative breast cancer. Cancer Biol Med 16:299–311. https://doi.org/10.20892/j.issn.2095-3941.2018.0209
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
Thavarool SB, Muttath G, Nayanar S, Duraisamy K, Bhat P, Shringarpure K, Nayak P, Tripathy JP, Thaddeus A, Philip S (2019) Improved survival among oral cancer patients: findings from a retrospective study at a tertiary care cancer centre in rural Kerala. India World J Surg Oncol 17:15. https://doi.org/10.1186/s12957-018-1550-z
Wang W, Lin P, Sun B, Zhang S, Cai W, Han C, Li L, Lu H, Zhao X (2014) Epithelial-mesenchymal transition regulated by EphA2 contributes to vasculogenic mimicry formation of head and neck squamous cell carcinoma. Biomed Res Int 2014:803914. https://doi.org/10.1155/2014/803914
Wang HF, Wang SS, Zheng M, Dai LL, Wang K, Gao XL, Cao MX, Yu XH, Pang X, Zhang M (2019) Hypoxia promotes vasculogenic mimicry formation by vascular endothelial growth factor A mediating epithelial-mesenchymal transition in salivary adenoid cystic carcinoma. Cell Prolif 52:e12600. https://doi.org/10.1111/cpr.12600
Wang SS, Gao XL, Liu X, Gao SY, Fan YL, Jiang YP, Ma XR, Jiang J, Feng H, Chen QM (2016) CD133+ cancer stem-like cells promote migration and invasion of salivary adenoid cystic carcinoma by inducing vasculogenic mimicry formation. Oncotarget 7:29051–29062. https://doi.org/10.18632/oncotarget.8665
Wang Y, Sun H, Zhang D, Fan D, Zhang Y, Dong X, Liu S, Yang Z, Ni C, Li Y (2018a) TP53INP1 inhibits hypoxia-induced vasculogenic mimicry formation via the ROS/snail signalling axis in breast cancer. J Cell Mol Med 22:3475–3488. https://doi.org/10.1111/jcmm.13625
Wang Y, Wang X, Zhang Y, Yu L, Zhu B, Wu S, Wang D (2018b) Vasculogenic mimicry and expression of ALDH1, Beclin1, and p16 correlate with metastasis and prognosis in oral squamous cell carcinoma. Int J Clin Exp Pathol 11:1599–1609
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z (2020) Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 11:5120. https://doi.org/10.1038/s41467-020-18794-x
Wu Z, Song W, Cheng Z, Yang D, Yu L (2017) Expression of LGR5 in oral squamous cell carcinoma and its correlation to vasculogenic mimicry. Int J Clin Exp Pathol 10:11267–11275
Yue Y, Lou Y, Liu X, Peng X (2021) Vasculogenic mimicry in head and neck tumors: a narrative review. Transl Cancer Res 10:3044–3052. https://doi.org/10.21037/tcr-21-34
Zhang JG, Zhou HM, Zhang X, Mu W, Hu JN, Liu GL, Li Q (2020) Hypoxic induction of vasculogenic mimicry in hepatocellular carcinoma: role of HIF-1 α, RhoA/ROCK and Rac1/PAK signaling. BMC Cancer 20:32. https://doi.org/10.1186/s12885-019-6501-8
Zhang Y, Ge Y, Ping X, Yu M, Lou D, Shi W (2018) Synergistic apoptotic effects of silibinin in enhancing Paclitaxel toxicity in human gastric cancer cell lines. Mol Med Rep 18:1835–1841. https://doi.org/10.3892/mmr.2018.9129
Zhang Z, Imani S, Shasaltaneh MD, Hosseinifard H, Zou L, Fan Y, Wen Q (2019) The role of vascular mimicry as a biomarker in malignant melanoma: a systematic review and meta-analysis. BMC Cancer 19:1134. https://doi.org/10.1186/s12885-019-6350-5
Zhou J, Huang S, Wang L, Yuan X, Dong Q, Zhang D, Wang X (2017) Clinical and prognostic significance of HIF-1α overexpression in oral squamous cell carcinoma: a meta-analysis. World J Surg Oncol 15:104. https://doi.org/10.1186/s12957-017-1163-y