Luminescence Properties of CdTe and CdZnTe Materials When Used as Substrate for IR Detectors

Journal of Electronic Materials - Tập 52 - Trang 4117-4138 - 2023
Thibault Pichon1, Salima Mouzali1, Olivier Boulade1, Alain Lusson2, Giacomo Badano3, Jean-Louis Santailler3, Névine Rochat3, Olivier Gravrand3, Olivier Limousin1
1Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, Gif-sur-Yvette, France
2Groupe d’étude de la Matière Condensée (GEMAC), CNRS, Université Paris-Saclay, Université de Versailles St Quentin en Yvelines, Versailles, France
3CEA/LETI, Université Grenoble Alpes, Grenoble Cedex 9, France

Tóm tắt

In astrophysics, in the infrared domain, the most widely used detectors are based on HgCdTe technology, where the light-sensitive HgCdTe layer is grown on a CdZnTe substrate. When located on space-based instruments, these detectors are submitted to ionizing particle irradiation. It has been shown in the literature that, when the CdZnTe substrate is not fully removed, an increase in the detector background is observed. This increase was suspected to be linked to CdZnTe substrate luminescence: carriers excited by the passage of the ionizing particle lose their energy by emitting photons, which are in turn detected by the HgCdTe detection layer. We validate this assumption with a model and an irradiation campaign performed on real detectors, and demonstrate that the pollution mainly comes from low-energy photons emitted within the substrate. The application of the model relies on CdZnTe material properties. In particular, luminescence characteristics are of prime importance. No data were available in the literature at 100 K (detector operating temperature) with 4% zinc concentration. Thus, we performed optical measurements on CdZnTe substrates identical to those used in IR detector fabrication. Measurement results are presented within this paper. Three samples were submitted to different sets of measurements: one CdTe sample used as a reference and two CdZnTe samples. We present photoluminescence measurements from 4 to 50 K and cathodoluminescence spectra acquired at 80 K, 100 K, and 300 K. We show that excitonic recombination dominates up to 100 K in the CdTe and CdZnTe material. We have also performed ellipsometry measurements at 80 K, 100 K, and 300 K. Each measurement has been carefully analyzed and compared to published data. These measurements helped us to understand the luminescence properties of the CdZnTe material, and then were directly used in the application of the model to infer the response of infrared detectors under irradiation.

Tài liệu tham khảo

S. Del Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, and P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9, 3491 (2009). https://doi.org/10.3390/s90503491. C. Ferekides, and J. Britt, CdTe solar cells with efficiencies over 15%. Sol. Energy Mater. Sol. Cells 35, 255 (1994). https://doi.org/10.1016/0927-0248(94)90148-1. A. Rogalski, Infrared detectors: status and trends. Prog. Quantum Electron. 27, 59 (2003). https://doi.org/10.1016/S0079-6727(02)00024-1. D. Johnson, A. Waczynski, P.W. Marshall, E.J. Polidan, C.J. Marshall, R.A. Reed, R.A. Kimble, G. Delo, D. Schlossberg, A.M. Russell, T. Beck, Y. Wen, J. Yagelowich, R.J. Hill, E. Wassell, and E.S. Cheng, Radiation effects in WFC3 IR detectors, in Proceedings of SPIE Focal Plane Arrays for Space Telescopes, (2004), vol. 5167, p. 243. https://doi.org/10.1117/12.508443 R. Smith, C. Bebek, M. Bonati, M.G. Brown, D. Cole, G. Rahmer, M. Schubnell, S. Seshadri, and G. Tarle, Noise and zero-point drift in 1.7 μm cutoff detectors for SNAP, in Proceedings of SPIE High Energy, Optical, and Infrared Detectors for Astronomy VIII, (2006), vol. 6276, p. 261. https://doi.org/10.1117/12.672616 A. Waczynski, P.W. Marshall, C.J. Marshall, R. Foltz, R.A. Kimble, S.D. Johnson, and R.J. Hill, Radiation induced luminescence of the CdZnTe substrate in HgCdTe detectors for WFC3, in Proceedings of SPIE High Energy, Optical, and Infrared Detectors for Astronomy VIII, (2005), vol. 5902, p. 161. https://doi.org/10.1117/12.617716 M.L. Dorn, J.L. Pipher, C. McMurtry, S. Hartman, A. Mainzer, M. McKelvey, R. McMurray, D. Chevara, and J. Rosser, Proton irradiation results for long-wave HgCdTe infrared detector arrays for near-earth object camera. JATIS 2, 036002 (2016). https://doi.org/10.1117/1.JATIS.2.3.036002. T. Pichon, S. Mouzali, O. Boulade, O. Gravrand, and O. Limousin, Influence of the CdZnTe substrate thickness on the response of HgCdTe detectors under irradiation: modeling of the substrate luminescence. J. Electron. Mater. 49, 6918 (2020). https://doi.org/10.1007/s11664-020-08237-0. T. Le Goff, N. Baier, O. Gravrand, J.-A. Nicolas, T. Pichon, and O. Boulade, ROIC glow reduction in very low flux short wave infra-red focal plane arrays for astronomy, in Proceedings of SPIE x-Ray, Optical, and Infrared Detectors for Astronomy IX, (2020), 118. https://doi.org/10.1117/12.2560344. T. Pichon, O. Boulade, S. Mouzali, P. Mulet, S.D. Camillis, C. Koumeir, J.-L. Santailler, G. Badano, O. Gravrand, and O. Limousin, Experimental study of the influence of the CdZnTe substrate thickness on the response of infrared HgCdTe photodetectors under proton irradiation, in x-Ray, Optical, and Infrared Detectors for Astronomy IX, (2020), vol. 11454, p. 114540O. https://doi.org/10.1117/12.2562142 D.J. Olego, J.P. Faurie, S. Sivananthan, and P.M. Raccah, Optoelectronic properties of Cd 1−xZnxTe films grown by molecular beam epitaxy on GaAs substrates. Appl. Phys. Lett. 47, 1172 (1985). https://doi.org/10.1063/1.96316. F. Molva, J.P. Chamonal, and J.L. Pautrat, Shallow acceptors in cadmium telluride. Phys. Stat. Sol. 109, 635 (1982). https://doi.org/10.1002/pssb.2221090222. H.-Y. Shin, and C.-Y. Sun, The exciton and edge emissions in CdTe crystals. MSEB 52, 78 (1998). https://doi.org/10.1016/S0921-5107(97)00145-1. G. Fonthal, L. Tirado-Mejia, J.I. Marin-Hurtado, H. Ariza-Calderon, and J.G. Mendoza-Alvarez, Temperature dependence of the band gap energy of crystalline CdTe. J. Phys. Chem. Solids 61, 579 (2000). https://doi.org/10.1016/S0022-3697(99)00254-1. S. Jain, Photoluminescence study of cadmium zinc telluride, Ph.D dissertation, West Virginia University, (2001). J.M. Francou, K. Saminadayar, and J.L. Pautrat, Shallow donors in CdTe. Phys. Rev. B 41, 12035 (1990). https://doi.org/10.1103/PhysRevB.41.12035. J. Lee and N.C. Giles, Low-temperature photoluminescence from bulk CdTe and Cd0.967 Zn0.033 Te. J Appl Phys 78, 1191 (1995). https://doi.org/10.1063/1.360356. J.P. Chamonal, E. Molva, and J.L. Pautrat, Identification of Cu and Ag acceptors in CdTe. Solid State Commun. 43, 801 (1982). https://doi.org/10.1016/0038-1098(82)90843-2. K. Hjelt, M. Juvonen, T. Tuomi, S. Nenonen, E.E. Eissler, and M. Bavdaz, Photoluminescence of Cd1−xZnxTe crystals grown by high-pressure bridgman technique. Phys. Stat. Sol. 162, 747 (1997). https://doi.org/10.1002/1521-396X(199708)162:2%3c747::AID-PSSA747%3e3.0.CO;2-2. J. Lee, N.C. Giles, D. Rajavel, and C.J. Summers, Room-temperature band-edge photoluminescence from cadmium telluride. Phys. Rev. B 49, 1668 (1994). https://doi.org/10.1103/PhysRevB.49.1668. P. Capper, Properties of Narrow Gap Cadmium-Based Compounds (London: INSPEC The Institution of Electrical Engineers, 1994). P. Horodyský and P. Hlídek, Free-exciton absorption in bulk CdTe: temperature dependence: free-exciton absorption in bulk CdTe: temperature dependence. Phys. Status Solidi B 243, 494 (2006). https://doi.org/10.1002/pssb.200541402. F. Gemain, Etudes Spectroscopiques du Dopage dans les Matériaux II-VI Pour les Détecteurs Infrarouge et les Cellules Photovoltaïques (Grenoble: Université Joseph Fourier, 2012). S.P. Tobin, J.P. Tower, P.W. Norton, D. Chandler-Horowitz, P.M. Amirtharaj, V.C. Lopes, W.M. Duncan, A.J. Syllaios, C.K. Ard, N.C. Giles, J. Lee, R. Balasubramanian, A.B. Bollong, T.W. Steiner, M.L.W. Thewalt, D.K. Bowen, and B.K. Tanner, A comparison of techniques for nondestructive composition measurements in CdZnTe substrates. J. Electron. Mater. 24, 697 (1995). https://doi.org/10.1007/BF02657981. J.L. Reno, and E.D. Jones, Determination of the dependence of the band gap energy on composition for Cd1−xZnx Te. Phys. Rev. B 45, 1440 (1992). https://doi.org/10.1103/PhysRevB.45.1440. K. Oettinger, D.M. Hofmann, L. Al, B.K. Efros, M.S. Meyer, and K.W. Benz, Excitonic line broadening in bulk grown Cd1–x ZnxTe. J. Appl. Phys. 71, 4523 (1992). https://doi.org/10.1063/1.350798. P.Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Berlin Heidelberg: Springer, 2010), p.2010. https://doi.org/10.1007/978-3-642-00710-1. E. Molva, J.L. Pautrat, K. Saminadayar, G. Milchberg, and N. Magnea, Acceptor states in CdTe and comparison with ZnTe. General trends Phys. Rev. 30, 3344 (1984). https://doi.org/10.1103/PhysRevB.30.3344. C.B. Norris and C.E. Barnes, Cathodoluminescence studies of the 1.4 eV bands in CdTe. Rev. Phys. Appl. 12, 219 (1977). https://doi.org/10.1051/rphysap:01977001202021900. M. Fiederle, A. Fauler, J. Konrath, V. Babentsov, J. Franc, and R.B. James, Comparison of undoped and doped high resistivity CdTe and (Cd, Zn)Te detector crystals. IEEE Trans. Nucl. Sci. 51, 1864 (2004). https://doi.org/10.1109/TNS.2004.832958. J. Krustok, V. Valdna, K. Hjelt, and H. Collan, Deep center luminescence in p -type CdTe. J. Appl. Phys. 80, 1757 (1996). https://doi.org/10.1063/1.362981. K. Lischka, G. Brunthaler, and W. Jantsch, Deep donor levels due to isolated Fe in CdTe. J. Cryst. Growth 72, 355 (1985). https://doi.org/10.1016/0022-0248(85)90172-1. D. Kuciauskas, A. Kanevce, P. Dippo, S. Seyedmohammadi, and R. Malik, Minority-carrier lifetime and surface recombination velocity in single-crystal CdTe. IEEE J. Photovolt 5, 366 (2015). https://doi.org/10.1109/JPHOTOV.2014.2359738. R. Triboulet and P. Siffert, CdTe and Related Compounds; Physics Defects, Hetero- and Nano-structures, Crystal Growth, Surfaces and Applications (Elsevier, 2010). https://doi.org/10.1016/C2009-0-17817-0. S. Hildebrandt, H. Uniewski, J. Schreiber, and H.S. Leipner, Localization of Y luminescence at glide dislocations in cadmium telluride. J. Phys. III 7, 1505 (1997). https://doi.org/10.1051/jp3:1997203. A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd0.8Zn0.2Te. Phys. Rev. B 54, 7622 (1996). https://doi.org/10.1103/PhysRevB.54.7622. Z.-F. Li, W. Lu, G.S. Huang, J.R. Yang, L. He, and S.C. Shen, Microphotoluminescence mapping on CdZnTe: Zn distribution. J. Appl. Phys. 90, 260 (2001). https://doi.org/10.1063/1.1378062. S. John, C. Soukoulis, M.H. Cohen, and E.N. Economou, Theory of electron band tails and the urbach optical-absorption edge. Phys. Rev. Lett. 57, 1777 (1986). https://doi.org/10.1103/PhysRevLett.57.1777. N. Bouarissa, Pseudopotential calculations of Cd1−xZnxTe: energy gaps and dielectric constants. Physica B 399, 126 (2007). https://doi.org/10.1016/j.physb.2007.05.034. M. Prokesch and C. Szeles, Accurate measurement of electrical bulk resistivity and surface leakage of CdZnTe radiation detector crystals. J. Appl. Phys. 100, 014503 (2006). https://doi.org/10.1063/1.2209192. F.G. Sánchez-Almazan, H. Navarro-Contreras, G. Ramírez-Flores, M.A. Vidal, O. Zelaya-Angel, M.E. Rodríguez, and R. Baquero, Temperature dependence of the band gap of Cd1−xZnxTe alloys of low zinc concentrations. J. Appl. Phys. 79, 7713 (1996). https://doi.org/10.1063/1.362374. R. Pässler, Temperature dependence of fundamental band gaps in group IV, III–V, and II–VI materials via a two-oscillator model. J. Appl. Phys. 89, 6235 (2001). https://doi.org/10.1063/1.1369407. J.P. Laurenti, J. Camassel, A. Bouhemadou, B. Toulouse, R. Legros, and A. Lusson, Temperature dependence of the fundamental absorption edge of mercury cadmium telluride. J. Appl. Phys. 67, 6454 (1990). https://doi.org/10.1063/1.345119. T.S. Jeong and P.Y. Yu, Temperature dependence of the photocurrent in p-type CdTe. J. Korean Phys. Soc. 41, 1101 (2003). D. Chandler-Horowitz, Semiconductor Measurement Technology: Analytic Analysis of Ellipsometric Errors (Washington: National Bureau of Standards, 1986). J.D. Jackson, Classical Electrodynamics, 3rd ed., (New York: Wiley, 1999). S.A. Sadao Adachi and T.K. ToshifumiKimura, Optical constants of Zn1–x Cdx Te ternary alloys: experiment and modeling. Jpn. J. Appl. Phys. 32, 3496 (1993). https://doi.org/10.1143/JJAP.32.3496. D.T.F. Marple, Optical absorption edge in CdTe: experimental. Phys. Rev. 150, 728 (1966). https://doi.org/10.1103/PhysRev.150.728. P. Hlidek, J. Bok, J. Franc, and R. Grill, Refractive index of CdTe: spectral and temperature dependence. J. Appl. Phys. 90, 1672 (2001). https://doi.org/10.1063/1.1385351. E. Finkman and S.E. Schacham, The exponential optical absorption band tail of Hg1−xCdxTe. J. Appl. Phys. 56, 2896 (1984). https://doi.org/10.1063/1.333828. M.A. Quijada and R. Henry, Temperature evolution of exciton absorptions in Cd1−xZnxTe materials, in Proceedings of SPIE 6692, Cryogenic Optical Systems and Instruments XII, (2007), vol. 6692, p. 43. https://doi.org/10.1117/12.735604. J. Hamann, A. Burchard, M. Deicher, T. Filz, V. Ostheimer, C. Schmitz, H. Wolf, and Th. Wichert, and The ISOLDE Collaboration, Identification of Ag-acceptor related photoluminescence in 111Ag doped CdTe. Appl. Phys. Lett. 72, 3029 (1998). https://doi.org/10.1063/1.121530. S. Seto, A. Tanaka, Y. Masa, S. Dairaku, and M. Kawashima, Annealing behavior of bound exciton lines in high quality CdTe. Appl. Phys. Lett. 53, 1524 (1988). https://doi.org/10.1063/1.99945.