Tăng cường lòng mạch trong các phình động mạch nội sọ: thực tế hay đặc điểm?—Phân tích dòng chảy đa mô thức định lượng

Springer Science and Business Media LLC - Tập 16 Số 11 - Trang 1999-2008 - 2021
Franziska Gaidzik1, Mariya Pravdivtseva2, Naomi Larsen3, Olav Jansen3, Jan‐Bernd Hövener2, Philipp Berg1
1Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke University, University of Magdeburg, Forschungscampus STIMULATE, Universitätsplatz 3, 39106, Magdeburg, Germany
2Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, Kiel, Germany
3Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany

Tóm tắt

Tóm tắt Mục đích

Tăng cường thành phình động mạch nội sọ (IA) trên hình ảnh cộng hưởng từ thành mạch sau tiêm thuốc đối quang (VW-MRI) được cho là một biomarker cho viêm thành mạch và sự không ổn định của phình mạch. Tuy nhiên, các yếu tố chính xác góp phần vào việc tăng cường vẫn chưa được làm rõ. Nghiên cứu này điều tra mối quan hệ giữa việc tăng cường lòng mạch và hành vi dòng chảy trong phình động mạch để đánh giá tính khả thi của VW-MRI như một phương pháp thay thế để xác định hành vi dòng chảy định lượng và định tính trong túi phình mạch.

Từ khóa

#tăng cường lòng mạch #phình động mạch nội sọ #hình ảnh cộng hưởng từ #dòng chảy trong phình động mạch #viêm thành mạch #tính không ổn định của phình mạch

Tài liệu tham khảo

Wiebers DO (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. The Lancet 362(9378):103–110

Etminan N, Rinkel GJ (2016) Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol 12(12):699

Cebral JR, Detmer F, Chung BJ, Choque-Velasquez J, Rezai B, Lehto H, Tulamo R, Hernesniemi J, Niemela M, Yu A (2019) Local hemodynamic conditions associated with focal changes in the intracranial aneurysm wall. Am J Neuroradiol 40(3):510–516

Leemans EL, Cornelissen BMW, Said M, Rvd B, Slump CH, Marquering HA, Majoie CBLM (2019) Intracranial aneurysm growth: consistency of morphological changes. Neurosurg Focus FOC 47(1):E5. https://doi.org/10.3171/2019.4.FOCUS1987

Leemans EL, Cornelissen BMW, Slump CH, Majoie CBLM, Cebral JR, Marquering HA (2019) Comparing morphology and hemodynamics of stable-versus-growing and grown intracranial aneurysms. Am J Neuroradiol 40(12):2102–2110. https://doi.org/10.3174/ajnr.A6307

Detmer FJ, Chung BJ, Jimenez C, Hamzei-Sichani F, Kallmes D, Putman C, Cebral JR (2019) Associations of hemodynamics, morphology, and patient characteristics with aneurysm rupture stratified by aneurysm location. Neuroradiology 61(3):275–284

Balasso A, Fritzsche M, Liepsch D, Prothmann S, Kirschke JS, Sindeev S, Frolov S, Friedrich B (2019) High-frequency wall vibrations in a cerebral patient specific aneurysm model. Biomed Eng Biomedizinische Technik 64(3):275–284

Xu L, Saito A, Yokoyama Y, Sato K, Sasaki T, Yamaguchi R, Sugawara M, Liu H (2016) Low-frequency harmonics in inlet flow rate play a crucial role in inducing flow instabilities in terminal cerebral aneurysms. J Biomech Sci Eng 11 (3):16–00117–00116–00117

Liang L, Steinman DA, Brina O, Chnafa C, Cancelliere NM, Pereira VM (2019) Towards the clinical utility of CFD for assessment of intracranial aneurysm rupture – a systematic review and novel parameter-ranking tool. J NeuroInterventional Surg 11(2):153–158. https://doi.org/10.1136/neurintsurg-2018-014246

Cebral JR, Mut F, Weir J, Putman CM (2011) Association of hemodynamic characteristics and cerebral aneurysm rupture. Am J Neuroradiol 32(2):264–270

Chung BJ, Mut F, Putman CM, Hamzei-Sichani F, Brinjikji W, Kallmes D, Jimenez CM, Cebral JR (2018) Identification of hostile hemodynamics and geometries of cerebral aneurysms: a case-control study. Am J Neuroradiol 39(10):1860–1866

Berg P, Beuing O (2018) Multiple intracranial aneurysms: a direct hemodynamic comparison between ruptured and unruptured vessel malformations. Int J Comput Assist Radiol Surg 13(1):83–93

Tulamo R, Frösen J, Hernesniemi J, Niemelä M (2018) Inflammatory changes in the aneurysm wall: a review. J Neurointerventional Surg 10(Suppl 1):i58–i67

Turkmani AH, Edwards NJ, Chen PR (2015) The role of inflammation in cerebral aneurysms. Neuroimmunol Neuroinflamm 2:102–106

Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, Jääskeläinen J (2006) Growth factor receptor expression and remodeling of saccular cerebral artery aneurysm walls: implications for biological therapy preventing rupture. Neurosurgery 58(3):534–541

Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, Jääskeläinen J (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35(10):2287–2293

Larsen N, Von Der Brelie C, Trick D, Riedel C, Lindner T, Madjidyar J, Jansen O, Synowitz M, Flüh C (2018) Vessel wall enhancement in unruptured intracranial aneurysms: an indicator for higher risk of rupture? High-resolution MR imaging and correlated histologic findings. Am J Neuroradiol 39(9):1617–1621

Edjlali M, Guédon A, Hassen WB, Boulouis G, Benzakoun J, Rodriguez-Régent C, Trystram D, Nataf F, Meder J-F, Turski P, Oppenheim C, Naggara O (2018) Circumferential thick enhancement at vessel wall MRI Has high specificity for intracranial aneurysm instability. Radiology 289(1):181–187. https://doi.org/10.1148/radiol.2018172879

Larsen N, Flüh C, Saalfeld S, Voß S, Hille G, Trick D, Wodarg F, Synowitz M, Jansen O, Berg P (2020) Multimodal validation of focal enhancement in intracranial aneurysms as a surrogate marker for aneurysm instability. Neuroradiology 62(12):1627–1635. https://doi.org/10.1007/s00234-020-02498-6

Zwarzany Ł, Tyburski E, Poncyljusz W (2021) High-resolution vessel wall magnetic resonance imaging of small unruptured intracranial aneurysms. J Clin Med 10(2):225

Hadad S, Mut F, Chung B, Roa J, Robertson A, Hasan D, Samaniego E, Cebral J (2020) Regional Aneurysm Wall Enhancement is Affected by Local Hemodynamics: A 7T MRI Study. American Journal of Neuroradiology

Zhang M, Peng F, Li Y, He L, Liu A, R. L, (2021) Associations between morphology and hemodynamics of intracranial aneurysms based on 4D flow and black-blood magnetic resonance imaging. Quant Imaging Med Surg 11(2):597–607. https://doi.org/10.21037/qims-20-440

Hu P, Yang Q, Wang D-D, Guan S-C, Zhang H-Q (2016) Wall enhancement on high-resolution magnetic resonance imaging may predict an unsteady state of an intracranial saccular aneurysm. Neuroradiology 58(10):979–985

Cornelissen BM, Leemans EL, Coolen BF, Peper ES, van den Berg R, Marquering HA, Slump CH, Majoie CB (2019) Insufficient slow-flow suppression mimicking aneurysm wall enhancement in magnetic resonance vessel wall imaging: a phantom study. Neurosurg Focus 47(1):E19

Cornelissen BM, Leemans EL, Slump CH, Marquering HA, Majoie CB, van den Berg R (2019) Vessel wall enhancement of intracranial aneurysms: fact or artifact? Neurosurg Focus 47(1):E18

van den Berg R (2020) Intracranial aneurysm wall enhancement: fact or fiction? Neuroradiology 62:269–270. https://doi.org/10.1007/s00234-020-02367-2

Pravdivtseva M, Gaidzik F, Berg P, Hoffman C, Rivera-Rivera L, Medero R, Bodart L, Roldan-Alzate A, Speidel M, Johnson K, Wieben O, Jansen O, Hövener J-B, Larsen N (2020) Pseudo-Enhancement in Intracranial Aneurysms on Black Blood MRI: Effects of flow rate, spatial resolution, and additional flow suppression. J Magn Reson Imaging 54:888–901. https://doi.org/10.1002/jmri.27587

Pravdivtseva M, Peschke E, Lindner T, Wodarg F, Hensler J, Gabbert D, Voges I, Berg P, Barker AJ, Jansen O, Hövener J-B (2020) 3D-printed, patient-specific intracranial aneurysm models: from clinical data to flow experiments with endovascular devices. Med Phys 48:1469–1484. https://doi.org/10.1002/mp.14714

Pelc NJ, Bernstein MA, Shimakawa A, Glover GH (1991) Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imaging 1(4):405–413

Berg P, Saalfeld S, Voß S, Beuing O, Janiga G (2019) A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation. Neurosurg Focus 47(1):E15

Lankhaar J-W, Hofman MBM, Marcus JT, Zwanenburg JJM, Faes TJC, Vonk-Noordegraaf A (2005) Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging 22(1):73–79

Bouillot P, Brina O, Ouared R, Lovblad K-O, Farhat M, Pereira VM (2014) Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design. PLoS One 9(12):e113762

Sano T, Ishida F, Tsuji M, Furukawa K, Shimosaka S, Suzuki H (2017) Hemodynamic differences between ruptured and unruptured cerebral aneurysms simultaneously existing in the same location 2 case reports and proposal of a novel parameter oscillatory velocity index. World Neurosurg 98:868. e865–868. e810

Tanioka S, Ishida F, Kishimoto T, Tsuji M, Tanaka K, Shimosaka S, Toyoda M, Kashiwagi N, Sano T, Suzuki H (2019) Quantification of hemodynamic irregularity using oscillatory velocity index in the associations with the rupture status of cerebral aneurysms. J Neurointerventional Surg 11(6):614–617

Bart MWC, Eva LL, Cornelis HS, Henk AM, Charles BLMM, van den René B (2019) Vessel wall enhancement of intracranial aneurysms: fact or artifact? Neurosurgical Focus FOC 47(1):E18. https://doi.org/10.3171/2019.4.FOCUS19236