Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nhiệt độ thấp làm thay đổi thành phần lipid màng plasma và hoạt động ATPase của trái dứa trong quá trình phát triển bệnh đen lòng
Tóm tắt
Màng plasma (PM) đóng vai trò trung tâm trong việc kích hoạt các phản ứng ban đầu với tổn thương do lạnh và duy trì sự cân bằng tế bào. Việc đặc trưng phản ứng của lipid màng đối với nhiệt độ thấp có thể cung cấp thông tin quan trọng để xác định các yếu tố nguyên nhân sớm góp phần gây ra tổn thương do lạnh. Để làm điều này, thành phần lipid màng PM và hoạt động ATPase được đánh giá trong trái dứa (Ananas comosus) liên quan đến tác động của nhiệt độ thấp đến sự phát triển của bệnh đen lòng, một dạng tổn thương do lạnh. Nhiệt độ lạnh ở 10 °C đã gây ra sự phát triển của bệnh đen lòng song song với sự gia tăng rò rỉ điện giải. Hoạt động ATPase ở màng plasma giảm sau 1 tuần ở nhiệt độ thấp, tiếp theo là sự giảm thêm sau 2 tuần. Hoạt động enzyme không thay đổi trong quá trình bảo quản ở 25 °C. Sự mất mát phospholipid PM tổng cộng được tìm thấy trong quá trình lão hóa sau thu hoạch, nhưng có sự giảm nhiều hơn khi bảo quản ở 10 °C. Phosphatidylcholine và phosphatidylethanolamine là các loài phospholipid PM chủ yếu. Nhiệt độ thấp làm tăng mức độ axit phosphatidic nhưng giảm mức độ phosphatidylinositol. Cả hai loài phospholipid này không có sự thay đổi trong quá trình bảo quản ở 25 °C. Việc bảo quản sau thu hoạch ở cả hai nhiệt độ làm giảm mức độ C18:3 và C16:1, và tăng mức độ C18:1. Nhiệt độ thấp giảm mức độ C18:2 và tăng mức độ C14:0. Việc ứng dụng bên ngoài axit phosphatidic được phát hiện làm ức chế hoạt động ATPase của màng plasma trái dứa trong ống nghiệm. Việc sửa đổi thành phần lipid màng và ảnh hưởng của nó đối với tính chất chức năng của màng plasma ở nhiệt độ thấp đã được thảo luận liên quan đến vai trò của chúng trong sự phát triển bệnh đen lòng của trái dứa.
Từ khóa
#màng plasma #lipid #hoạt động ATPase #dứa #bệnh đen lòng #nhiệt độ thấpTài liệu tham khảo
Ahn S, Im Y, Chung G, Seong K, Cho B (2000) Sensitivity of plasma membrane H+ -ATPase of cucumber root system in response to low root temperature. Plant Cell Rep 19:831–835
Anderson RA, Boronenkov IV, Doughman SD, Kunz J, Loijens JC (1999) Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem 274:9907–9910
Badea C, Basu SK (2009) The effect of low temperature on metabolism of membrane lipids in plants and associated gene expression. Plant Omics J 2:78–84
Beja-Tal S, Borochov A (1994) Age-related changes in biochemical and physical properties of carnation petal plasma membranes. J Plant Physiol 143:195–199
Benabdellah K, Azcón-Aguilar C, Ferrol N (2000) Alterations in the plasma membrane polypeptide pattern of tomato roots (Lycopersicon esculentum) during the development of arbuscular mycorrhiza. J Exp Bot 51:747–754
Berglund AH, Norberg P, Quartacci MF, Nilsson R, Liljenberg C (2001) Properties of plant plasma membrane lipid models – bilayer permeability and monolayer behaviour of glucosylceramide and phosphatidic acid in phospholipid mixtures. Physiol Plant 109:117–122
Berglund AH, Calucci MFQL, Navari-Izzo F, Pinzino C, Liljenberg C (2002) Alterations of wheat root plasma membrane lipid composition induced by copper stress result in changed physicochemical properties of plasma membrane lipid vesicles. Biochim Biophys Acta - Biomembranes 1564:466–472
Borochov A, Halevy AH, Shinitzky M (1982) Senescence and the fluidity of rose retal membranes : relationship to phospholipid metabolism. Plant Physiol 69:296–299
Bradford MM (1976) A rapid and sensitive method for the quantitative microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–252
Brown DJ, DuPont FM (1989) Lipid composition of plasma membranes and endomembranes prepared from roots of barley (Hordeum vulgare L.). Plant Physiol 90:955–961
Camoni L, Lucente CD, Pallucca R, Visconti S, Aducci P (2012) Binding of phosphatidic acid to 14-3-3 proteins hampers their ability to activate the plant plasma membrane H+ -ATPase. IUBMB Life 64:710–716
Catucci L, Leo VD, Milano F, Giotta L, Vitale R, Agostiano A et al (2012) Oxidoreductase activity of chromatophores and purified cytochrome bc1 complex from Rhodobacter sphaeroides: a possible role of cardiolipin. J Bioenerg Biomembr 44:487–493
Choi Y-J, Tomás-Barberán AF, Saltveit ME (2005) Wound-induced phenolic accumulation and browning in lettuce (Lactuca sativa L.) leaf tissue is reduced by exposure to n-alcohols. Postharvest Biol Technol 37:47–55
Ferrol N, Bennett AB (1996) A single gene may encode differentially localized Ca2+ -ATPases in tomato. The Plant Cell 8:1159–1169
Franck C, Lammertyn J, Ho Q, Verboven P, Verlinden B, Nicola B (2007) Browning disorders in pear fruit. Postharvest Biol Technol 43:1–13
Hernandez A, Cooke D, Clarkson D (2002) In vivo activation of plasma membrane H+ -ATPase hydrolytic activity by complex lipid-bound unsaturated fatty acids in Ustilago maydis. Eur J Biochem 269:1006–1011
Hewajulige I, Wijeratnam RW, Wijesundera RMA (2003) Fruit calcium concentration and chilling injury during low temperature storage of pineapple. J Sci Food Agric 83:1451–1454
Hewajulige IG, Wijeratnam SW, Wijesundera RL (2006) Pre-harvest application of calcium to control black heart disorder in Mauritius pineapples during low-temperature storage. J Sci Food Agric 86:420–424
Hinz G, Hillmer S, Bäumer M, Hohl I (1999) Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the golgi apparatus of developing pea cotyledons in different transport vesicles. The Plant Cell 11:1509–1524
Hodges TK, Leonard RT (1974) Purification of a plasma membrane- bound adenosine triphosphatase from plant roots. Methods Enzymol 32:392–406
Hu H, Li X, Dong C, Chen W (2011) Effects of wax treatment on quality and postharvest physiology of pineapple fruit in cold storage. Afr J Biotechnol 10(39):7592–7603
Imbault AK, Marie-Alphonsine PA, Horry JP, Francois-Haugrin M, Romuald K, Soler A (2011) Polyphenol oxidase and peroxidase expression in four pineapple varieties (Ananas comosus L.) after a chilling injury. J Agric Food Chem 59:342–348
Kaniuga Z, Saczynska V, Miskiewicz E, Garstka M (1999) The fatty acid composition of phosphatidylglycerol and sulfoquinovosyldiacylglycerol of Zea mays genotypes differing in chilling susceptibility. J Plant Physiol 154(2):256–263
Kasamo K (1988) Response of tonoplast and plasma membrane ATPase in chilling sensitive and insensitive rice (Oryza sativa L.) culture cells to low temperature. Plant Cell Physiol 29:1085–1094
Kasamo K (1990) Mechanism for the activation of plasma membrane H+ -ATPase from rice (Oryza sativa L.) culture cells by molecular species of a phospholipid. Plant Physiol 93:1049–1052
Kasamo K, Sakakibara Y (1995) The plasma membrane H+ -ATPase from higher plants : functional reconstitution into liposomes and its regulation by phospholipids. Plant Sci 111:117–131
Kasamo K, Yamanishi H (1991) Functional reconstitution of plasma membrane H+ -ATPase from mung bean (Vigna radiata L.) hypocotyls in liposomes prepared with various molecular species of phospholipids. Plant Cell Physiol 32(8):1219–1225
Kasamo K, Kagita F, Yamanishi H, Sakaki T (1992) Low temperature-induced changes in the thermotropic properties and fatty acid composition of the plasma membrane and tonoplast of cultured rice (Oryza sativa L.) cells. Plant Cell Physiol 33(4):609–616
Knowles NR, Knowles LO (1989) Correlations between electrolyte leakage and degree of saturation of polar lipids from aged potato (Solanum tuberosum L) tuber tissue. Ann Bot 63:331–338
Kodama H, Hamada Т, Horiguchi G, Nishimura M, Iba K (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3-fatty-acid desaturase in transgenic tobacco. Plant Physiol 105:601–605
Kojima M, Suzuki H, Ohnishi M, Ito S (1998) Effects of growth temperature on lipids of adzuki bean cells. Phytochemistry 47(8):1483–1487
Kooijman EE, Chupin V, deKruijff B, Burger K (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4:162–174
Kukavica B, Quartacci MF, Veljović-Jovanović S, Navari-Izzo F (2007) Lipid composition of pea (Pisum sativum l.) and maize (Zea mays l.) root plasma membrane and membrane–bound peroxidase and superoxide dismutase. Arch Biol Sci 59(4):295–302
Lee S, Singh A, Chung G, Ahn S, Noh E, Steudle E (2004) Exposure of roots of cucumber (Cucumis sativus) to low temperature severely reduces root pressure, hydraulic conductivity and active transport nutrients. Physiol Plant 120:413–420
Lindberg S, Banaś A, Stymne S (2005) Effects of different cultivation temperatures on plasma membrane ATPase activity and lipid composition of sugar beet roots. Plant Physiol Biochem 43:261–268
Lukatkin AS (2002) Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: Reactive oxygen species formation during plant chilling. Russ J Plant Physiol 49(5):622–627
Lurie S, Ronen R, Lipsker Z, Aloni B (1994) Effects of paclobutrazol and chilling temperatures on lipids, antioxidants and ATPase activity of plasma membrane isolated from green bell pepper fruits. Physiol Plant 91:593–598
Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Biol 24:445–466
M’Voula-Tsieri M, Hartmann-Bouillon MA, Benveniste P (1981) Properties of nucleoside diphosphatases in purified membrane fractions from maize coleoptiles. I. Study of latency. Plant Sci Lett 20:379–386
Martz F, Sutinen M, Kiviniemi S, Palta J (2006) Changes in freezing tolerance, plasma membrane H+ -ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation. Tree Physiol 26:783–790
Meijer HJ, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306
Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 42:527–543
Munnik T, Vermeer JE (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33:655–669
Navari-Izzo F, Quartacci MF, Melfi D, Izzo R (1993) Lipid composition of plasma membranes isolated from sunflower seedlings grown under water-stress. Physiol Plant 87:508–514
Nilprapruck P, Pradisthakarn N, Authanithee F, Keebjan P (2008) Effect of exogenous methyl jasmonate on chilling injury and quality of pineapple (Ananas comosus L.) cv. Pattavia. Silpakorn Univ Sci Technol J 2:33–42
Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria. The crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568
Norberg P, Liljenberg C (1991) Lipids of plasma membranes prepared from oat root cells : effects of induced water-deficit tolerance. Plant Physiol 96(4):1136–1141
Nukulthornprakit O, Siriphanich J (2005) Hydrogen peroxide and ascorbic acid contents, superoxide dismutase and catalase activities in Smooth Cayenne and Queen pineapples during cold storage. Acta Horticult 682:611–615
Palta JP, Meade LS (1989) During cold acclimation of potato species, an increase in 18:2 and a decrease in 16:0 in plasma membrane phospholipids coincide with an increase in freezing stress resistance. Plant Physiol 89:S–89
Pan Y-Y, Wang X, Ma L-G, Sun D-Y (2005) Characterization of phosphatidylinositol-specific phospholipase C (PI-PLC) from Lilium daviddi pollen. Plant Cell Physiol 46(10):1657–1665
Parkin K l, Kuo S-J (1989) Chilling-induced lipid degradation in cucumber (Cucumis sativa L cv hybrid C) fruit. Plant Physiol 90:1049–1056
Paull RE, Rohrbach KG (1985) Symptom development of chilling injury in pineapple fruit (Ananas comosus). J Am Soc Horticultral Sci 110:100–105
Pinton R, Cakmak I, Marschner H (1994) Zinc deficiency enhanced NAD(P)H‐dependent superoxide radical production in plasma membrane vesicles isolated from roots of bean plants. J Exp Bot 45:45–50
Portillo F (2000) Regulation of plasma membrane H+-ATPase in fungi and plants. Biochim Biophys Acta 1469:31–42
Pusittigul I, Kondo S, Siriphanich J (2012) Internal browning of pineapple (Ananas comosus L.) fruit and endogenous concentrations of abscisic acid and gibberellins during low temperature storage. Sci Horticult 146:45–51
Quartacci M, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84
Rouser G, Fleischer S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 4:494–496
Smith LG (1983) Cause and development of blackheart in pineapples chilling. Trop Agricul 60(1):31–35
SmoleńAska-Sym G, Kacperska A (1994) Phosphatidylinositol metabolism in low temperature-affected winter oilseed rape leaves. Physiol Plant 91:1–8
Stalleart VM, Geuns JMC (1994) Phospholipid and free sterol composition of hypocotyl plasma membranes of ageing mung bean seedlings. Phytochemistry 36:1177–1180
Stevenson JM, Perera IY, Heilmann I, Persson S, Boss WF (2000) Inositol signaling and plant growth. Trends Plant Sci 5(6):252–258
Stewart RJ, Sawyer BJB, Bucheli CS, Robinson SP (2001) Polyphenol oxidase is induced by chilling and wounding in pineapple. Aust J Plant Physiol 28(3):181–191
Surjus A, Durand M (1996) Lipid changes in soybean root membranes in response to salt treatment. J Exp Bot 47:17–23
Takemiya A, Shimazaki K (2010) Phosphatidic acid inhibits blue light-induced stomatal opening via inhibition of protein phosphatase 1. Plant Physiol 153:1555–1562
Teisson C, Combres JC, Prevel PM, Marchal J (1979) Internal browning of pineapples. Fruits 34(4):245–261
Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot 62(7):2349–2361
Thompson J, Froese C, Madey E, Smith M, Hong Y (1998) Lipid metabolism during plant senescence. Prog Lipid Res 37:119–141
Uemura M, Steponkus PL (1994) A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing toIerance. Plant Physiol 104:479–496
Vega S, Rio A d, Bamberg J, Palta J (2004) Evidence for the up-regulation of stearoyl-ACP (D9) desaturase gene rxpression during cold acclimation. Am J Potato Res 81:125–135
Vossen JH, Abd-El-Haliem A, Fradin EF, Berg GCMvd, Ekengren SK, Meijer HJ et al (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62:224–239
Wang X (2001) Plant phospholipases. Annu Rev Plant Physiol Plant Mol Biol 52:211–231
Wang CY, Kramer GF, Whitaker BD, Lusby WR (1992) Temperature preconditioning increases tolerance to chilling injury and alters lipid composition in zucchini squash. J Plant Physiol 140:229–235
Wang YS, Tian SP, Xu Y (2005) Effects of high oxygen concentration on pro and anti-oxidant enzymes in peach fruits during postharvest periods. Food Chem 91(1):99–104
Wang H, Qian Z, Ma S, Zhou Y, Patrick JW, Duan X et al (2013) Energy status of ripening and postharvest senescent fruit of litchi (Litchi chinensis Sonn). BMC Plant Biol 13:55
Weerahewa D, Adikaram NKB (2005) Some biochemical factors underlying the differential susceptibility of two pineapple cultivars to internal browning disorder. Ceylon J Sci (Biol Sci) 34:7–20
Whitaker BD (1993) Lipid changes in microsomes and crude plastid fractions during storage of tomato fruits at chilling and nonchilling temperatures. Phytochemistry 32:265–271
White F, Cooke D, Earnshaw M, Clarkson D, Burden R (1990) Does plant growth temperature modulate the membrane composition and ATPase activities of tonoplast and plasma membranes fractions from rye roots? Phytochemistry 29:3385–3393
Widell S, Larsson C (1990) A critical evaluation of markers used in plasma membrane purification. In: Larsson C, Mole IM (eds) The plant plasma membrane. Springer-Verlag, Berlin, pp 16–44
Wijeratnam RSW, Hewajulige IGN, Wijesundera RLC, Abeysekere M (2006) Fruit calcium concentration and chilling injury during low temperature storage of pineapple. Acta Horticult 702:203–208
Wismer WV, Worthing WM, Yada RY, Marangoni AG (1998) Membrane lipid dynamics and lipid peroxidation in the early stages of low-temperature sweetening in tubers of Solanum tuberosum. Physiol Plant 102:396–410
Wu J, Seliskar DM, Gallagher JL (2005) The response of plasma membrane lipid composition in callus of the halophyte spartina patens (poaceae) to salinity stress. Am J Bot 92(5):852–858
Xue H, Chen X, Li G (2007) Involvement of phospholipid signaling in plant growth and hormone effects. Curr Opin Plant Biol 10:483–489
Yang Y-q, Wang X-f (2005) Changes of plasma membrane H+ -ATPase activities of glycine max seeds by PEG treatment. Fores Stud China 7:7–11
Youryon P, Wongs-Aree C, McGlasson WB, Glahan S, Kanlayanarat S (2007) Internal browning occurrences of ‘queen’ pineapple under various low temperatures. Acta Horticult 804:555–560
Youryon P, Wongs-Aree C, McGlasson WB, Glahan S, Kanlayanarat S (2013) Alleviation of internal browning in pineapple fruit by peduncle infiltration with solutions of calcium chloride or strontium chloride under mild chilling storage. Int Food Res J 20:239–246
Zamani S, Bybordi A, Khorshidi MB, Nezami T (2010) Effects of NaCl salinity levels on lipids and proteins of canola (Brassica Napus L.) cultivars. Adv Environ Biol 4:397–403
Zhai S-M, Gao Q, Xue H-W, Sui Z-H, Yue G-D, Yang A-F et al (2012) Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance. Planta 235:69–84
Zhang C, Tian S (2009) Crucial contribution of membrane lipid sunsaturation to acquisition of chilling-tolerance in peach fruit stored at 0 °C. Food Chem 115:405–411
Zhang C, Tian S (2010) Peach fruit acquired tolerance to low temperature stress by accumulation of linolenic acid and N-acylphosphatidylethanolamine in plasma membrane. Food Chem 120:864–872
Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R et al (2003) The Oleate-stimulated phospholipase D, PLD and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. The Plant Cell 15:2285–2295
Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R et al (2009) Phospholipase Dα1 and phosphatidic acid Regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. The Plant Cell 21:2357–2377
Zhang XD, Wang RP, Zhang FJ, Tao FQ, Li WQ (2013) Lipid profiling and tolerance to low-temperature stress in Thellungiella salsuginea in comparison with Arabidopsis thaliana. Biol Pantarum 57:149–153
Zhou Y, Dahler JM, Underhill SJR, Wills RBH (2003a) Enzymes associated with blackheart development in pineapple fruit. Food Chem 80(4):565–572
Zhou Y, O’Hare TJ, Jobin-Decor M, Underhill SJR, Wills RB, Graham MW (2003b) Transcriptional regulation of a pineapple polyphenol oxidase gene and its relationship to blackheart. Plant Biotechnol J 1:463–478
Zhou Y, Setz N, Niemietz C, Qu H, Offler C, Tyerman S et al (2007) Aquaporins and unloading of phloem-imported water in coats of developing bean seeds. Plant Cell Environ 30(12):1566–1577