Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Liệu pháp laser công suất thấp ngăn ngừa tổn thương giống như osteonecrosis hàm do thuốc thông qua việc chữa lành vết thương nướu nguyên phát trung gian bởi IL-1RA
Tóm tắt
Osteonecrosis hàm liên quan đến thuốc (MRONJ) là một bệnh nghiêm trọng gây suy nhược, do các loại thuốc chống hấp thu và chống tạo mạch máu gây ra, ảnh hưởng đáng kể đến chất lượng cuộc sống của bệnh nhân. Các nghiên cứu gần đây đã chỉ ra rằng việc chữa lành vết thương nướu nguyên phát có thể hiệu quả trong việc ngăn ngừa sự phát triển của MRONJ. Nghiên cứu này nhằm đánh giá tác động của liệu pháp laser công suất thấp (LLLT) trong việc thúc đẩy chữa lành vết thương nướu ở các ổ răng của chuột mô phỏng MRONJ và ngăn ngừa sự xuất hiện của MRONJ. Hơn nữa, chúng tôi đã khám phá cơ chế tiềm ẩn. Chuột được chia ngẫu nhiên thành ba nhóm: Ctrl, Zol, và Zol + LLLT. Việc sử dụng zoledronate và nhổ răng các răng hàm hai bên trên đã được áp dụng để xây dựng mô hình MRONJ, và LLLT được áp dụng tại chỗ vào các ổ răng để kiểm tra hiệu quả của LLLT. Tiếp theo, để khám phá chức năng của IL-1RA, chúng tôi tiến hành LLLT với kháng thể trung hòa đối kháng thụ thể interleukin-1 (IL-1RA) (được gọi là nhóm Zol + LLLT + IL-1RA NAb) hoặc kháng thể đối chứng âm cho việc nhổ răng trong các thí nghiệm cứu hộ động vật sau đó. Các quan sát dưới kính hiển vi, chụp CT vi mô và xét nghiệm mô học đã được thực hiện để đánh giá việc chữa lành vết thương nướu và tái tạo xương trong các ổ răng. Tác động của LLLT đối với khả năng di chuyển của các tế bào biểu mô được điều trị bằng zoledronate đã được đánh giá trong ống nghiệm. LLLT đã thúc đẩy việc chữa lành vết thương nướu nguyên phát mà không có xương hoại tử lộ ra. Kết quả chụp CT vi mô cho thấy thể tích xương và mật độ khoáng của các ổ răng cao hơn sau LLLT. Phân tích mô học cho thấy sự bao phủ hoàn toàn của nướu, sự tái tạo xương rõ rệt và viêm mô mềm giảm, với sự giảm mức cytokine tiền viêm, như interleukin-1 beta (IL-1β) và yếu tố hoại tử khối u-α (TNF-α), và tăng biểu hiện IL-1RA trong mô nướu ở nhóm LLLT. Phép thử cứu hộ cho thấy rằng tác động của LLLT trong việc thúc đẩy chữa lành vết thương nướu và ngăn ngừa MRONJ có thể bị giảm bớt một phần bởi các kháng thể trung hòa IL-1RA. Các nghiên cứu trong ống nghiệm cho thấy rằng LLLT tăng tốc độ di chuyển của tế bào biểu mô được điều trị bằng zoledronate. LLLT có thể thúc đẩy việc chữa lành vết thương nướu nguyên phát và góp phần vào sự tái tạo xương tiếp theo tại các ổ nhổ răng trong các tổn thương giống như MRONJ thông qua việc ức chế tín hiệu viêm trung gian bởi IL-1RA.
Từ khóa
#Osteonecrosis hàm #Liệu pháp laser công suất thấp #Kháng thể IL-1RA #Vết thương nướu #Zoledronate #Tái tạo xươngTài liệu tham khảo
Ruggiero SL, Dodson TB, Aghaloo T, Carlson ER, Ward BB, Kademani D. American Association of Oral and Maxillofacial Surgeons’ position paper on medication-related osteonecrosis of the jaws-2022 update. J Oral Maxillofac Surg. 2022;80(5):920–43. https://doi.org/10.1016/j.joms.2022.02.008.
Otto S, Aljohani S, Fliefel R, Ecke S, Ristow O, Burian E, et al. Infection as an important factor in medication-related osteonecrosis of the jaw (MRONJ). Medicina (Kaunas). 2021. https://doi.org/10.3390/medicina57050463.
Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg. 2005;63(11):1567–75. https://doi.org/10.1016/j.joms.2005.07.010.
Urade M, Tanaka N, Furusawa K, Shimada J, Shibata T, Kirita T, et al. Nationwide survey for bisphosphonate-related osteonecrosis of the Jaws in Japan. J Oral Maxillofac Surg. 2011;69(11):e364–71. https://doi.org/10.1016/j.joms.2011.03.051.
Hasegawa T, Kawakita A, Ueda N, Funahara R, Tachibana A, Kobayashi M, et al. A multicenter retrospective study of the risk factors associated with medication-related osteonecrosis of the jaw after tooth extraction in patients receiving oral bisphosphonate therapy: can primary wound closure and a drug holiday really prevent MRONJ? Osteoporos Int. 2017;28(8):2465–73. https://doi.org/10.1007/s00198-017-4063-7.
Zang X, He L, Zhao L, He Y, Xiao E, Zhang Y. Adipose-derived stem cells prevent the onset of bisphosphonate-related osteonecrosis of the jaw through transforming growth factor beta-1-mediated gingival wound healing. Stem Cell Res Ther. 2019;10(1):169. https://doi.org/10.1186/s13287-019-1277-y.
Giudice A, Barone S, Diodati F, Antonelli A, Nocini R, Cristofaro MG. Can surgical management improve resolution of medication-related osteonecrosis of the jaw at early stages? A prospective cohort study. J Oral Maxillofac Surg. 2020;78(11):1986–99. https://doi.org/10.1016/j.joms.2020.05.037.
Ristow O, Rückschloß T, Moratin J, Müller M, Kühle R, Dominik H, et al. Wound closure and alveoplasty after preventive tooth extractions in patients with antiresorptive intake-A randomized pilot trial. Oral Dis. 2021;27(3):532–46. https://doi.org/10.1111/odi.13556.
Ziebart T, Halling F, Heymann P, Neff A, Blatt S, Jung J, et al. Impact of soft tissue pathophysiology in the development and maintenance of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Dent J (Basel). 2016;4:4. https://doi.org/10.3390/dj4040036.
Matsumoto A, Sasaki M, Schmelzeisen R, Oyama Y, Mori Y, Voss PJ. Primary wound closure after tooth extraction for prevention of medication-related osteonecrosis of the jaw in patients under denosumab. Clin Oral Investig. 2017;21(1):127–34. https://doi.org/10.1007/s00784-016-1762-y.
Amaroli A, Colombo E, Zekiy A, Aicardi S, Benedicenti S, De Angelis N. Interaction between laser light and osteoblasts: photobiomodulation as a trend in the management of socket bone preservation—a review. Biology (Basel). 2020;9:11. https://doi.org/10.3390/biology9110409.
Kuffler DP. Photobiomodulation in promoting wound healing: a review. Regen Med. 2016;11(1):107–22. https://doi.org/10.2217/rme.15.82.
Dompe C, Moncrieff L, Matys J, Grzech-Lesniak K, Kocherova I, Bryja A, et al. Photobiomodulation-underlying mechanism and clinical applications. J Clin Med. 2020;9:6. https://doi.org/10.3390/jcm9061724.
Al-Watban FA. Laser therapy converts diabetic wound healing to normal healing. Photomed Laser Surg. 2009;27(1):127–35. https://doi.org/10.1089/pho.2008.2406.
Ahmed OM, Mohamed T, Moustafa H, Hamdy H, Ahmed RR, Aboud E. Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress. Biomed Pharmacother. 2018;101:58–73. https://doi.org/10.1016/j.biopha.2018.02.040.
de Oliveira G, Aroni MAT, Pinotti FE, Marcantonio E Jr, Marcantonio RAC. Low-level laser therapy (LLLT) in sites grafted with osteoconductive bone substitutes improves osseointegration. Lasers Med Sci. 2020;35(7):1519–29. https://doi.org/10.1007/s10103-019-02943-w.
Zhang J, Sun J, Zheng Q, Hu X, Wang Z, Liang Z, et al. Low-level laser therapy 810-nm up-regulates macrophage secretion of neurotrophic factors via PKA-CREB and promotes neuronal axon regeneration in vitro. J Cell Mol Med. 2020;24(1):476–87. https://doi.org/10.1111/jcmm.14756.
Habbema L, Verhagen R, Van Hal R, Liu Y, Varghese B. Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation. Lasers Med Sci. 2013;28(3):935–40. https://doi.org/10.1007/s10103-012-1179-z.
Aoki A, Mizutani K, Schwarz F, Sculean A, Yukna RA, Takasaki AA, et al. Periodontal and peri-implant wound healing following laser therapy. Periodontol. 2015;68(1):217–69. https://doi.org/10.1111/prd.12080.
Wu S, Chen Y, Zhang J, Chen W, Shao S, Shen H, et al. Effect of low-level laser therapy on tooth-related pain and somatosensory function evoked by orthodontic treatment. Int J Oral Sci. 2018;10(3):22. https://doi.org/10.1038/s41368-018-0023-0.
Soma T, Iwasaki R, Sato Y, Kobayashi T, Nakamura S, Kaneko Y, et al. Tooth extraction in mice administered zoledronate increases inflammatory cytokine levels and promotes osteonecrosis of the jaw. J Bone Miner Metab. 2021;39(3):372–84. https://doi.org/10.1007/s00774-020-01174-2.
Kou X, Xu X, Chen C, Sanmillan ML, Cai T, Zhou Y, et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci Transl Med. 2018;10:432. https://doi.org/10.1126/scitranslmed.aai8524.
Pabst AM, Ziebart T, Koch FP, Taylor KY, Al-Nawas B, Walter C. The influence of bisphosphonates on viability, migration, and apoptosis of human oral keratinocytes—in vitro study. Clin Oral Investig. 2012;16(1):87–93. https://doi.org/10.1007/s00784-010-0507-6.
Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg. 2003;61(9):1115–7. https://doi.org/10.1016/s0278-2391(03)00720-1.
Giudice A, Antonelli A, Muraca D, Fortunato L. Usefulness of advanced-platelet rich fibrin (A-PRF) and injectable-platelet rich fibrin (i-PRF) in the management of a massive medication-related osteonecrosis of the jaw (MRONJ): a 5-years follow-up case report. Indian J Dent Res. 2020;31(5):813–8. https://doi.org/10.4103/ijdr.IJDR_689_19.
Chang J, Hakam AE, McCauley LK. Current understanding of the pathophysiology of osteonecrosis of the jaw. Curr Osteoporos Rep. 2018;16(5):584–95. https://doi.org/10.1007/s11914-018-0474-4.
Qiu J, Wang X, Zhou H, Zhang C, Wang Y, Huang J, et al. Enhancement of periodontal tissue regeneration by conditioned media from gingiva-derived or periodontal ligament-derived mesenchymal stem cells: a comparative study in rats. Stem Cell Res Ther. 2020;11(1):42. https://doi.org/10.1186/s13287-019-1546-9.
Di Vito A, Chiarella E, Baudi F, Scardamaglia P, Antonelli A, Giudice D, et al. Dose-dependent effects of zoledronic acid on human periodontal ligament stem cells: an in vitro pilot study. Cell Transplant. 2020;29:963689720948497. https://doi.org/10.1177/0963689720948497.
Rodriguez-Lozano FJ, Garcia-Bernal D, Ros-Roca Mde L, Alguero Mdel C, Onate-Sanchez RE, Camacho-Alonso F, et al. Cytoprotective effects of melatonin on zoledronic acid-treated human mesenchymal stem cells in vitro. J Craniomaxillofac Surg. 2015;43(6):855–62. https://doi.org/10.1016/j.jcms.2015.04.012.
Mawardi H, Giro G, Kajiya M, Ohta K, Almazrooa S, Alshwaimi E, et al. A role of oral bacteria in bisphosphonate-induced osteonecrosis of the jaw. J Dent Res. 2011;90(11):1339–45. https://doi.org/10.1177/0022034511420430.
Dong X, He L, Zang X, He Y, An J, Wu B, et al. Adipose-derived stem cells promote bone coupling in bisphosphonate-related osteonecrosis of the jaw by TGF-beta1. Front Cell Dev Biol. 2021;9:639590. https://doi.org/10.3389/fcell.2021.639590.
Jere SW, Abrahamse H, Houreld NN. The JAK/STAT signaling pathway and photobiomodulation in chronic wound healing. Cytokine Growth Factor Rev. 2017;38:73–9. https://doi.org/10.1016/j.cytogfr.2017.10.001.
Latifyan S, Genot MT, Klastersky J. Bisphosphonate-related osteonecrosis of the jaw: a review of the potential efficacy of low-level laser therapy. Support Care Cancer. 2016;24(9):3687–93. https://doi.org/10.1007/s00520-016-3139-9.
Weber JB, Camilotti RS, Ponte ME. Efficacy of laser therapy in the management of bisphosphonate-related osteonecrosis of the jaw (BRONJ): a systematic review. Lasers Med Sci. 2016;31(6):1261–72. https://doi.org/10.1007/s10103-016-1929-4.
Statkievicz C, Toro LF, de Mello-Neto JM, de Sá DP, Casatti CA, Issa JPM, et al. Photomodulation multiple sessions as a promising preventive therapy for medication-related osteonecrosis of the jaws after tooth extraction in rats. J Photochem Photobiol B. 2018;184:7–17. https://doi.org/10.1016/j.jphotobiol.2018.05.004.
Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026–30. https://doi.org/10.1126/science.aam7928.
Girard S, Kadhim H, Larouche A, Roy M, Gobeil F, Sébire G. Pro-inflammatory disequilibrium of the IL-1 beta/IL-1ra ratio in an experimental model of perinatal brain damages induced by lipopolysaccharide and hypoxia-ischemia. Cytokine. 2008;43(1):54–62. https://doi.org/10.1016/j.cyto.2008.04.007.
Cheng SC, Huang WC, JH SP, Wu YH, Cheng CY. Quercetin inhibits the production of IL-1beta-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-kappaB signaling pathways. Int J Mol Sci. 2019;20:12. https://doi.org/10.3390/ijms20122957.
Rosenzweig JM, Lei J, Burd I. Interleukin-1 receptor blockade in perinatal brain injury. Front Pediatr. 2014;2:108. https://doi.org/10.3389/fped.2014.00108.
Zhang Q, Yu W, Lee S, Xu Q, Naji A, Le AD. Bisphosphonate induces osteonecrosis of the jaw in diabetic mice via NLRP3/caspase-1-dependent IL-1β mechanism. J Bone Miner Res. 2015;30(12):2300–12. https://doi.org/10.1002/jbmr.2577.
Ervolino E, Statkievicz C, Toro LF, de Mello-Neto JM, Cavazana TP, Issa JPM, et al. Antimicrobial photodynamic therapy improves the alveolar repair process and prevents the occurrence of osteonecrosis of the jaws after tooth extraction in senile rats treated with zoledronate. Bone. 2019;120:101–13. https://doi.org/10.1016/j.bone.2018.10.014.
de Sousa Ferreira VC, Lopes AP, Alves NM, Sousa FRN, Pereira KMA, Gondim DV, et al. Bisphosphonate-related osteonecrosis induced change in alveolar bone architecture in rats with participation of Wnt signaling. Clin Oral Investig. 2021;25(2):673–82. https://doi.org/10.1007/s00784-020-03551-7.
Tan JL, Lash B, Karami R, Nayer B, Lu YZ, Piotto C, et al. Restoration of the healing microenvironment in diabetic wounds with matrix-binding IL-1 receptor antagonist. Commun Biol. 2021;4(1):422. https://doi.org/10.1038/s42003-021-01913-9.
Muzio M, Polentarutti N, Sironi M, Poli G, De Gioia L, Introna M, et al. Cloning and characterization of a new isoform of the interleukin 1 receptor antagonist. J Exp Med. 1995;182(2):623–8. https://doi.org/10.1084/jem.182.2.623.
Ishida Y, Kondo T, Kimura A, Matsushima K, Mukaida N. Absence of IL-1 receptor antagonist impaired wound healing along with aberrant NF-kappaB activation and a reciprocal suppression of TGF-beta signal pathway. J Immunol. 2006;176(9):5598–606. https://doi.org/10.4049/jimmunol.176.9.5598.
Yan C, Gao N, Sun H, Yin J, Lee P, Zhou L, et al. Targeting imbalance between IL-1beta and IL-1 receptor antagonist ameliorates delayed epithelium wound healing in diabetic mouse corneas. Am J Pathol. 2016;186(6):1466–80. https://doi.org/10.1016/j.ajpath.2016.01.019.
Kondo M, Yamato M, Takagi R, Namiki H, Okano T. The regulation of epithelial cell proliferation and growth by IL-1 receptor antagonist. Biomaterials. 2013;34:121–9. https://doi.org/10.1016/j.biomaterials.2012.09.036.
Gupta A, Cady C, Fauser AM, Rodriguez HC, Mistovich RJ, Potty AGR, et al. Cell-free stem cell-derived extract formulation for regenerative medicine applications. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21249364.
Liu JS, Amaral TD, Brosnan CF, Lee SC. IFNs are critical regulators of IL-1 receptor antagonist and IL-1 expression in human microglia. J Immunol. 1998;161(4):1989–96.
Bry K, Lappalainen U. Interleukin-4 and transforming growth factor-beta 1 modulate the production of interleukin-1 receptor antagonist and of prostaglandin E2 by decidual cells. Am J Obstet Gynecol. 1994;170(4):1194–8. https://doi.org/10.1016/s0002-9378(94)70121-0.
Khan I, Rahman SU, Tang E, Engel K, Hall B, Kulkarni AB, et al. Accelerated burn wound healing with photobiomodulation therapy involves activation of endogenous latent TGF-beta1. Sci Rep. 2021;11(1):13371. https://doi.org/10.1038/s41598-021-92650-w.
Arany PR, Nayak RS, Hallikerimath S, Limaye AM, Kale AD, Kondaiah P. Activation of latent TGF-beta 1 by low-power laser in vitro correlates with increased TGF-beta 1 levels in laser-enhanced oral wound healing. Wound Repair Regener. 2007;15(6):866–74. https://doi.org/10.1111/j.1524-475X.2007.00306.x.
Arany PR, Cho A, Hunt TD, Sidhu G, Shin K, Hahm E, et al. Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration. Sci Transl Med. 2014;6(238):238–69. https://doi.org/10.1126/scitranslmed.3008234.
Song JW, Li K, Liang ZW, Dai C, Shen XF, Gong YZ, et al. Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci Rep. 2017;7(1):620. https://doi.org/10.1038/s41598-017-00553-6.
Tim CR, Martignago CCS, Assis L, Neves LM, Andrade AL, Silva NC, et al. Effects of photobiomodulation therapy in chondrocyte response by in vitro experiments and experimental model of osteoarthritis in the knee of rats. Lasers Med Sci. 2022;37(3):1677–86. https://doi.org/10.1007/s10103-021-03417-8.
Oliveira RF, Marquiore LF, Gomes CBS, de Abreu PTR, Ferreira LAQ, Diniz LA, et al. Interplay between epithelial and mesenchymal cells unveils essential proinflammatory and pro-resolutive mediators modulated by photobiomodulation therapy at 660 nm. Wound Repair Regen. 2022;30(3):345–56. https://doi.org/10.1111/wrr.13010.
Li H, Sun T, Liu C, Cao Y, Liu X. Photobiomodulation (450nm) alters the infection of periodontitis bacteria via the ROS/MAPK/mTOR signaling pathway. Free Radical Biol Med. 2020;152:838–53. https://doi.org/10.1016/j.freeradbiomed.2020.01.184.
Huang J, Wang L, Tian W. Small extracellular vesicles derived from adipose tissue prevent bisphosphonate-related osteonecrosis of the jaw by promoting angiogenesis. Int J Nanomed. 2021;16:3161–72. https://doi.org/10.2147/IJN.S305361.
Kikuiri T, Kim I, Yamaza T, Akiyama K, Zhang Q, Li Y, et al. Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J Bone Miner Res. 2010;25(7):1668–79. https://doi.org/10.1002/jbmr.37.
Williams DW, Lee C, Kim T, Yagita H, Wu H, Park S, et al. Impaired bone resorption and woven bone formation are associated with development of osteonecrosis of the jaw-like lesions by bisphosphonate and anti-receptor activator of NF-kappaB ligand antibody in mice. Am J Pathol. 2014;184(11):3084–93. https://doi.org/10.1016/j.ajpath.2014.07.010.