Low‐dose TNF augments fracture healing in normal and osteoporotic bone by up‐regulating the innate immune response

EMBO Molecular Medicine - Tập 7 Số 5 - Trang 547-561 - 2015
James Chan1, Graeme E. Glass1, Adel Ersek1, Andrew Freidin1, Graham V. Williams1, Kate H.C. Gowers2, Ana Isabel Espirito Santo1, Rosemary Jeffery3, W Otto3, Richard Poulsom3, Marc Feldmann1, Sara M. Rankin2, Nicole J. Horwood1, Jagdeep Nanchahal1
1Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
2National Heart and Lung Institute, Imperial College London, London, UK
3Histopathology Laboratory and In Situ Hybridisation Service Cancer Research UK – London Research Institute London UK

Tóm tắt

AbstractThe mechanism by which trauma initiates healing remains unclear. Precise understanding of these events may define interventions for accelerating healing that could be translated to the clinical arena. We previously reported that addition of low‐dose recombinant human TNF (rhTNF) at the fracture site augmented fracture repair in a murine tibial fracture model. Here, we show that local rhTNF treatment is only effective when administered within 24 h of injury, when neutrophils are the major inflammatory cell infiltrate. Systemic administration of anti‐TNF impaired fracture healing. Addition of rhTNF enhanced neutrophil recruitment and promoted recruitment of monocytes through CCL2 production. Conversely, depletion of neutrophils or inhibition of the chemokine receptor CCR2 resulted in significantly impaired fracture healing. Fragility, or osteoporotic, fractures represent a major medical problem as they are associated with permanent disability and premature death. Using a murine model of fragility fractures, we found that local rhTNF treatment improved fracture healing during the early phase of repair. If translated clinically, this promotion of fracture healing would reduce the morbidity and mortality associated with delayed patient mobilization.

Từ khóa


Tài liệu tham khảo

10.2353/ajpath.2009.090148

10.1002/jbmr.354

10.1097/00005131-199505000-00006

10.1134/S001249661205002X

10.1210/jc.2011-2332

10.1189/jlb.0810446

10.4049/jimmunol.171.11.6052

10.4049/jimmunol.174.8.4845

10.1002/art.37797

10.4049/jimmunol.175.8.5370

10.1182/blood.V84.8.2776.2776

10.1016/S8756-3282(01)00638-X

10.1161/HYPERTENSIONAHA.112.201251

10.1097/PRS.0b013e3182589e63

10.1172/JCI62423

10.4049/jimmunol.181.2.1232

10.1111/j.1524-475X.2012.00792.x

10.1189/jlb.0606365

10.1073/pnas.87.13.5134

10.1189/jlb.0407247

10.1359/JBMR.040206

10.1016/j.injury.2005.07.019

10.1080/17453670710015373

10.1136/jech.2006.056622

10.1002/jbmr.1698

10.3109/17453679209154794

Friedlaender GE, 2001, Osteogenic protein‐1 (bone morphogenetic protein‐7) in the treatment of tibial nonunions, J Bone Joint Surg Am, 83, S151

10.1111/j.1582-4934.2008.00673.x

10.1359/jbmr.2003.18.9.1584

10.1016/S0736-0266(03)00003-2

10.1084/jem.20041276

10.1073/pnas.1018501108

10.2106/00004623-200212000-00001

10.3109/17453679308993640

10.1002/stem.1040

10.1002/jor.20649

10.1016/8756-3282(89)90078-1

10.1016/j.bone.2011.03.720

10.1038/cmi.2012.56

10.1016/j.beem.2008.06.001

10.1155/2009/917837

10.1016/S0020-1383(09)70007-5

10.1089/ten.teb.2009.0687

10.1007/s11999-011-1865-3

10.1359/jbmr.2001.16.6.1004

Kong HL, 1992, Medical treatment of Cushing's syndrome with aminoglutethimide and ketoconazole, Singapore Med J, 33, 523

10.1089/jir.2012.0108

10.1073/pnas.94.22.12053

Lane JM, 2001, BMPs: why are they not in everyday use?, J Bone Joint Surg Am, 83, S161

10.1038/nm1201-1291

10.1056/NEJM200012073432307

10.1152/ajplung.00256.2011

10.2106/00004623-200206000-00022

Liu R, 2010, The potential role of muscle in bone repair, J Musculoskelet Neuronal Interact, 10, 71

10.1096/fj.10-178939

10.1089/scd.2011.0589

10.1002/jnr.10269

10.1097/00003086-199810001-00004

10.1152/ajpregu.00797.2009

10.4049/jimmunol.163.11.6148

10.1016/j.jtcvs.2011.07.053

10.2174/157488611795684712

10.1016/j.biomaterials.2009.11.058

10.1038/nri1785

10.1371/journal.pone.0039871

10.1016/S0736-0266(00)00014-0

10.1016/j.bone.2012.03.008

10.1182/blood-2009-04-216085

10.1134/S0006297908090034

10.1016/j.injury.2007.10.035

10.1080/09629359791901

10.1006/bcmd.2001.0473

Ruggiero P, 2003, Glycosylation enhances functional stability of the chemotactic cytokine CCL2, Eur Cytokine Netw, 14, 91

10.1034/j.1600-065X.2000.17706.x

10.1161/01.RES.0000149518.86865.3e

10.1038/nri3070

10.1016/j.bbrc.2009.06.135

10.2106/JBJS.F.00127

10.1084/jem.20100414

10.1038/nri2779

10.1016/S0002-9440(10)63268-3

10.1016/S0140-6736(05)66782-7

10.1111/j.1365-2362.1979.tb00893.x

10.1165/rcmb.2011-0358OC

Surgeons AAoO, 2007, Diagnosis of Carpal Tunnel Syndrome: evidence Report

Tessier PA, 1997, Chemokine networks in vivo: involvement of C‐X‐C and C‐C chemokines in neutrophil extravasation in vivo in response to TNF‐alpha, J Immunol, 159, 3595, 10.4049/jimmunol.159.7.3595

10.1172/JCI29919

10.1016/j.immuni.2004.07.006

10.1007/s00223-004-0258-y

10.1002/stem.1208

10.1161/01.ATV.19.9.2085

10.1056/NEJM198902093200606

10.1016/j.bone.2006.12.055

10.1371/journal.pone.0028933

10.1152/ajpheart.01107.2006

10.1242/dmm.003186

10.1016/j.bmcl.2010.10.020

10.1046/j.1365-2567.2000.00085.x

10.1016/j.bone.2007.07.022

10.1016/0014-5793(89)80590-3

10.4049/jimmunol.179.3.1942