Low-Pressure Silver Sintering of Automobile Power Modules with a Silicon-Carbide Device and an Active-Metal-Brazed Substrate
Tóm tắt
To improve the efficiency of power modules in environmentally friendly vehicles, silicon-carbide (SiC) chips and silicon-nitride (Si3N4) active metal-brazed (AMB) substrates were bonded by low-pressure silver (Ag) sintering at 220°C and 1 MPa using Ag paste. The initial bond strength of the sintered joint was 35.7 MPa, and the void content and bonding-layer thickness of the sintered joint were 4–7% and 94–99 μm, respectively. To verify the reliability of the silver-sintered joints, we conducted thermal cycling tests (TCTs) and high-temperature storage tests (HTSTs). The bond strength of the SiC chip/Si3N4 AMB substrate after the TCT decreased to 16.9 MPa, but increased to 43.6 MPa after the HTST. Thermomechanical fatigue cracks from the difference in the thermal-expansion coefficient occurred at the sintered joint interface during the TCT, which decreased the sintered joint strength. As the sintering process progressed continuously during the long test time at a high temperature, the densification of the sintered joint increased to 98.4%, which lead to an increase in bonding strength. In this study, a SiC device was sinterbonded to a Si3N4 AMB substrate using silver paste at a low pressure, and optimization at a commercialized level was achieved.
Tài liệu tham khảo
S. Ryu, B. Hull, S. Dhar, L. Cheng, Q. Zhang, J. Richmond, M. Das, A. Agarwal, J. Palmour, A. Lelis, B. Geil, and C. Scozzie, Mater. Sci. Forum 645, 969 (2010).
J. Millan, in Semiconductor Conference (CAS) (2012), p. 57.
W.S. Hong, M.S. Kim, D. Kim, and C. Oh, J. Electron. Mater. 48, 122 (2019).
H. Zhang, W. Li, Y. Gao, H. Zang, J. Jiu, and K. Suganuma, J. Electron. Mater. 46, 5201 (2017).
H. Chin, K. Cheong, and A. Ismail, Metall. Mater. Trans. B 41, 824 (2010).
M. Abtew and G. Selvaduray, Mater. Sci. Eng. R Rep. 27, 95 (2000).
S.W. Yoon, M.D. Glover, and K. Shiozaki, IEEE Trans. Power Electron. 28 (5), 2448 (2013).
J.W. Yoon, J.H. Bang, Y.H. Ko, S.H. Yoo, J.K. Kim, and C.W. Lee, J. Microelectron. Packag. Soc. 21, 1 (2014).
M.S. Kim, C. Oh, and W.S. Hong, J. Weld. Join. 37, 15 (2019).
J.S. Horschhorn, Introduction to Powder Metallurgy (La Vista: The Colonial Press Inc., 1969), pp. 155–273.
R.H.R. Castro and K. Benthem, Sinering (New York: Springer, 2013), pp. 1–96.
S.-K. Lin, S. Nagao, E. Yoko, C. Oh, H. Zhang, Y. Liu, S. Lin, and K. Suganuma, Sci. Rep. 6, 34769 (2016).
C. Oh, S. Nagao, T. Kunimune, and K. Suganuma, Appl. Phys. Lett. 104, 161603 (2014).
C. Oh, S. Nagao, and K. Suganuma, J. Mater. Sci.: Mater. Electron. 26, 2525 (2015).
S. Noh, H. Zhang, and K. Suganuma, Materials 11, 2531 (2018).
S. Noh, C. Choe, C. Chen, H. Zhang, and K. Suganuma, J. Mater. Sci.: Mater. Electron. 29, 15223 (2018).
W.S. Hong and S.S. Cha, J. Microelectron. Packag. Soc. 19, 67 (2012).
S. Divinski, M. Lohmann, and C. Herzig, Acta Mater. 49, 249 (2001).
R. Shioda, Y. Kariya, N. Mizumura, and K. Sasaki, J. Electron. Mater. 46, 1155 (2017).
D.R. Gomes, A.A. Turkin, D.I. Vainchtein, and J.M. Hosson, Scr. Mater. 164, 17 (2019).
C.A. Yang, C.R. Kao, and H. Nishikawa, 2017 IEEE 67th ECTC, 1974 (2016).