Low-Frequency Negative Resistance in Thin Anodic Oxide Films

Journal of Applied Physics - Tập 33 Số 9 - Trang 2669-2682 - 1962
T. W. Hickmott1
1General Electric Research Laboratory, Schenectady, New York

Tóm tắt

Negative resistance and large current densities have been observed in the direct-current—voltage characteristics of five metal-oxide-metal sandwiches prepared from evaporated metal films. The systems studied and their voltages for maximum current are: Al-SiO-Au, 3.1 V; Al-Al2O3-Au, 2.9 V; Ta-Ta2O5-Au, 2.2 V; Zr-ZrO2-Au, 2.1 V; and Ti-TiO2-Au, 1.7 V. For aluminum oxide, which has been most extensively studied, the voltage for maximum current is independent of film thickness for films between 150 and 1000 Å thick; the phenomenon is not field dependent. Peak-to-valley ratios of 30:1 and current densities of 10 A/cm2 are typical. Maximum current densities at peak voltage are 25 A/cm2; minimum current densities are 0.01 A/cm2. Switching time from peak current to valley current is <0.5 μsec but negative resistance is not found for 60-cycle voltages. Establishment of the dc characteristics and dependence on temperature and atmosphere are described. Electron emission from aluminum oxide sandwiches can occur at 2.5 V. Space-charge-limited currents in the insulator provide a possible mechanism for the current-voltage curves and large currents below the voltage for maximum current through the oxide films. The mechanism responsible for negative resistance is uncertain.

Từ khóa


Tài liệu tham khảo

1961, Phys. Rev., 122, 1101, 10.1103/PhysRev.122.1101

1961, J. Appl. Phys., 32, 172, 10.1063/1.1735973

1961, J. Appl. Phys., 32, 646, 10.1063/1.1736064

1959, Electrochim. Acta, 1, 205, 10.1016/0013-4686(59)85008-8

1957, Philips Research Rept., 12, 240

1951, J. Appl. Phys., 22, 569, 10.1063/1.1700008

1955, J. Electrochem. Soc., 102, 655, 10.1149/1.2429931

1959, Trans. Faraday Soc., 55, 632, 10.1039/tf9595500632

1961, Trans. IRE, CP-8, 80

1950, Proc. Phys. Soc. (London), B63, 818

1957, Proc. Phys. Soc. (London), B70, 676

1951, RCA Rev., 12, 362

1955, Phys. Rev., 97, 1538, 10.1103/PhysRev.97.1538

1956, Phys. Rev., 103, 1648, 10.1103/PhysRev.103.1648

1955, J. Appl. Phys., 26, 498, 10.1063/1.1722030

1957, J. Appl. Phys., 28, 454, 10.1063/1.1722771

1961, Solid State Electronics, 2, 165, 10.1016/0038-1101(61)90034-X

1955, Phys. Rev., 97, 1531, 10.1103/PhysRev.97.1531

1958, Nature, 182, 1296, 10.1038/1821296a0

1958, Helv. Phys. Acta, 31, 311

1961, Nature, 189, 297, 10.1038/189297a0

1959, RCA Rev., 20, 702

1960, J. Brit. Inst. Radio Engrs., 20, 337

1948, Proc. Phys. Soc. (London), 60, 13, 10.1088/0959-5309/60/1/304

1961, J. Appl. Phys., 32, 166, 10.1063/1.1735972

1961, Solid State Electronics, 3, 320, 10.1016/0038-1101(61)90017-X

1947, Phys. Rev., 71, 717, 10.1103/PhysRev.71.717

1938, Phys. Rev., 54, 647, 10.1103/PhysRev.54.647

1954, Acta Met., 2, 346, 10.1016/0001-6160(54)90182-0

1953, Acta Met., 1, 348, 10.1016/0001-6160(53)90111-4

1960, Radiotekhnika i elektronika, 5, 1338